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PREFACE

Throughout this document a monochrome image will be

denoted by brightness function I(r,c), where r and ¢ are
discrete row and column coordinates. I(r,c) is assumed
nonzero only for the square region 0 <r <N and
0 < ¢ < N, although extension to other image shapes and
coordinate systems is trivial. Image windows are
similarly indexed nxn blocks. The image function may be
considered a non-negative matrix. It can teake either
discrete values called gray levels or continuvous values
called luminance, brightness, density, or transmissivity.
Individual image elements will be called pixels. Elements
of texture - feature planes will 2also be called pixels.
They may take negative values, but will be rescaled to a

positive range for display as images.

This dissertation is the record of a search for fast,
effective texture measures. Fortunately, the search was
successful. Details of the search will not be of interest
to all readers, however. Chapters 1 and 2 introduce the
problem of texture segmentation and the historical

approaches to texture analysis. Chapter 3 documents our

vii




method of evslusting texture models,. Chepter 4 applies
this experimentel parcédigm to the co-occurrence method of
texture measurement; this esteblishes & benchmark for
evaluating other texture models. Correlation methods ere
investigated in Chapter 5. Chapter 6 traces the feilures
and partial successes of various ‘"speticl-statistical”
models. Chapter 7 presents the "texture energy" approach
to texture measurement, and Chapter 8 develops it into an
image segmentation system. Those interested only in the
final znalysis system should read Section 1.2 and Chapter
8. Chzpter 9 contains 2 krief summsry and suggestions for
further recseagrch. Three appendiccs document the

techniques used in this study.

Kenneth 1. Laws
Los Angeles, Celifornie

November, 1979
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ABSTRACT

The problem of image texture analysis is introduced, and
existing approaches are surveyed. BAn empirical evaluation
method is applied to two texture measurement systems,
co-occurrence statistics and augmented correlation
statistics. A "spatial-statistical” <class of texture
measures is then defined and evaluated. It leads to a
simple class of "texture energy" transforms, which perform
better than any of the preceding methods. These
transforms are very fast, and can be made invariant to
changes in luminance, contrast, and rotation without
histogram equalization or other preprocessing.

Texture energy is meessured by filtering with small masks,
typically 5x5, then with a moving-window average of the

absolute image values. This method, similar to human
visual processing, is appropriate for textures with short
coherence 1length or correlation distance. The filter

masks are integer-valued and separable, and can be
implemented with one-dimensional or 3x3 convolutions. The
averaging operation is also very fast, with computing time
independent of window size.

lexture energy planes may be linearly combined to form a
smeller number of discriminant planes. These principal
component planes seem to represent natural texture
dimensions, and to be more reliable texture measures than
the texture energy planes.

Texture segmentation or classification may be accomplished
using either texture energy or principal component planes

as input,. This study classified 15x15 blocks of eight
‘ natural textures. Accuracies of 72% were achieved with
co-occurrence statistics, 65% with augmented correlation
statistics, and 94% with texture energy statistics.
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CHAPTER 1
INTRODUCTION

Many tasks c¢an be performed better by mechaniceal
means then by biological systems. Not only are physical
systems faster, more sensitive, and more attentive than
any human, but also more quantitative. Image zanalysis is
a task ripe for automation, This study will develop
methods for extrecting texture information from aerial

photographs and images of natural scenes.

The goal of image sanalysis is extraction from =an
image of &ll the useful information it contains. Only
through imzge analysis does photographic‘ film become a
useful medium for data zcguisition. Most anelysis is now
accomplished by human interpreters, but mass screening
applications are growing so fast that autometion is

essential.

Scene analysis is the extraction of region or object
description from & given picture. The description may be
numerical or it may be a data structure representing
properties and relationships of the scene components. The
following are important steps in the development of a

scene analysis system:
1. Cetermine the purpose of the znalysis.
2. Model the dastsa source,

3. Anolyze the model to determine useful features.




4. Freprocess data to remove known effects,

5. Extract features or segment the image.

6. EJdit, resegment, or improve features.

7. Code and/or display regions and boundaries.

8. Use extracted information for semantic scene
analysis.

Texture anzlysis is fundamental to some spplications,
such as metal surfsce analysis and geologic fault
identification. Appropriate  theories of  texture
generation are required. In other applicestions, such as
radiographic diagnosis, texture recognition is more
important than knowledge of the physical genereting
mechanism. General 1imege cenalysis systems, such as the
human visual system, use texture as an aid in segmentation

and interpretation of scenes.

Figure 1-1 illustrates two fundamental texture types.
The first image is a "macro-texture,” or high-resolution
repetitive pattern. Structural analysis methods oare
adequate to describe such textures, although more than one
type of description is possible. The other three images
in Figure 1-1 are scenes which might be of interest in
aerial reconnaisance and vehicle gquidance. The scene
components are differentiated by their textures, but
description in terms of repetitive structurzl elements is
impossible. This dissertation will develop methods of
isolating and 1identifying small textured regions in

natural scenes.

This study is not limited to any one application area

o
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(a) A Structural Texture (b) A LANDSAT TImage
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(c) An Aerial Tmegc (3) A Naturel Ecene
Figure 1-1. Examples of Textured Scenes
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or dete type, elthough it is biased toward the anzlysis of
aeriel images. Military &and security sepplications of
scene analysis are reconnaissance, night vicsion, mapping
and terrain clessificaetion, terget detection snd trecking,
traffic monitoring, personnel identification, fingerprint
matching, and 2irport screening. Industrial and
scientific eapplications include thermal znalysis, perts
inspection, @particle counting, automation and. robot
vision, <crop monitoring, remote sensing, geologicsal
analysis, cell classification, chromosome analysis, and
radiological diagnosis. Scene analysis technigues might
also be of use 1in pattern recognition and document

processing.

1.1 Visual Texture Perception

Visual textures arise from many sources. Cellular
textures are composed of repeated similer elements called
primitives. Examples are leaves on a tree or bricks in 3
wall. Other texture types include flow patterns, fiber
masses, and stress cracking. A complete anelysis of any
texture would require modeling of the underlying physiceal

structure.

The bhuman visual system is capable of discrimineting
and classifying all of these textures. It is obvious theat
spontaneous discrimination does not require built-in
models of physical texture generators, although such

models may be used by trained observers.

Texture is generally taken to mean whatever structure

exists within a semantic region (one to which a name can

- — N
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be assigned). One component of this structure is deteail,
small image regions that are identifiable but not
sementically important. A second component 1is noise,
taken to be any artifact of the imaging and gquantizing
process. The third component resembles noise, but is a
property of the imaged object or scene. It arises from
detail just beyond the perceptual resolving power of the
analysis process, and seldom possesses a recognizable
pattern or dominant repetition frequency. We shall call
this component stochastic texture, micro-texture, or just

texture.

Texture is both structured and random. Tt is common
to speak of a uniform texture or 2 homogeneous texture,
despite the apparent contradiction. This homogeneity is a
perceptual phenomenon. Somehow the human visuazl system
analyzes 1images and measures texture properties. Some
texture fields a2re seen to be eguivalent, others to differ
in coarseness, linearity, or other texture dimensions.
All, however, are unified by their perception as texture
fields. We generally know 2 texture field when we see

Oone.

Perception of related elements as a whole is known as
grouping. Grouping is more fundamentel than recognition,
2s demonstrated by figure-ground reversals and by
ambiguous figures that cannot be recognized until parts
are grouped [1]. We use contour, brightness, color, éend
texture for grouping, as well as stereopsis and relative

motion.




Texture perception is itself & grouping phenomenon.
Julesz [2] showed that spontaneous texture discrimination
can occur even when recognition is prevented, and that a
smell amount of noisc can disrupt texture perception if it
destroys connectivity of texture elements. He comments

that
Instead of performing complex statistical analyses
when presented with complex patterns, the visual
system wherever possible detects clusters and
evaluates only a few of their relastively simple
properties. [p. 43]

If true, it does not necessarily follow that the eye
segments an image before evaluating texture. This study
will concentrate on an alternate hypothesis that 1local
segmentation and texture description are performed at each
pixel, with no global agreement on exact region

boundaries.

The chief <characteristic of texture is shift-
invariance. Perception of a texture field does not change
as its position on the retina changes. This seems to be
the very definition of a texture field: an image that is
not significantly changed by shifting. A region or

object, on the other hand, is position dependent.

We shall define texture to be that which remains
constant as a window (or fovea) is moved across an image.
This presupposes that the image is a single texture field.

Note that texture may change as a function of window size.

There is an ambiguity in the common meaning of
texture. Let two texture fields be identical except for a

difference in luminance. Most observers will say that the

6




(a) Uniformity

(c) Coarseness

(e) Regularity

"

(g) Directionality

1l

(i) Frequency

(b) Density

(f) Linearity

(h) Direction

==

(j) Phase

Figure 1-2. Perceptual Texture Dimensions.
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textures ere identicel, although the two fields are easily
distinguished. Similar results will Le obtained with
texture fields differing in contrest, color, =size,
rotation, or geometric werp. Texture is perceived to be

invarient to changes in illumination or cemere position.

We shzll consider &11 of these differences to be
differenc%s in texture, elthough ones ezsily mezsured or
compensated. Experimentel work for this study uses
monochrome imoges gusntized to heve nearly uniform greay
level histograms. This compensates for any differences in

illumination, sensor type, or film developing parameters.

Cne goal of texture anslysis is discovery of texture
meassures that correlate well with human perceﬁtion.
Figure 1-2 illustrates commonly proposed structural
texture dimensions. The illustrated scales are not
independent: frecuency is much the same &s density, and
coarseness is related to density and to element size (not
shown) . Perceptual contrest is correlated with several of
these sczles. Linearity is an attempt to describe element
shepe guantitetively. Direction clearly applies only to

directional textures.

Julesz [2] has shown thet the eye uses adaptive level
slicing. It mey group white with grey or grey with hklack,
but it cannot group white with black. The eye can also
group red with yellow and green with blue, but not red
with green or yellow with blue. Tt seems reasonable that

texture sceles should heve the came property.

It 1is debstazble whether direction and phase eérc




texture scales, although the texture fields are clearly
discriminable. Using the criterion of shift inveriance,
we shall consider direction to be a texture dimension;
phase is excluded. Note that phase discriminability might
be due to distinctive texture properties of the region

interface,

Perceptual sceles such as these are useful for region
description, but may have 1little relation to texture
measures computed in the hﬁman eye or in an artificial
vision system. Directionality and reqularity may be high-
level descriptions generated long after texture
segmentation has taken place. The same may be true of
shape descriptions and of color transformations such as

hue and saturation.

1.2 A Practical Texture Analysis System

This dissertation presents a set of "texture energy"
transforms that provide texture measures for each pixel of
a monochrome image. The transforms are fest, recuiring
only one-dimensional convolutions and simple
moving-average technicues. The method is more accurate
than gray 1level co-occurrence methods. Tt is local,
operating on small imege windows in much the seme manner
as the humsn visual system. It can be made invariant to
changes in 1luminance, contrast, and rotation without

histogram equalization or other preprocessing.

Figure 1-3 shows the sequence of images, or image
blocks, used in measuring texture. The original image is

first filtered with a set of sma2ll convolution masks,




I(r,c) |Micro- | F(r,c) |Energy E(r,c)_[componemt] ctec) [ Imire)
Filter "ITransform “IRotation = Llassifier p—«
-~
(a) Operator Seguence
F, E,
Fa E; Cy
° [ ] Y
I . . M
. ° °
F"' Ep-l Cq
Fo E,

{b) Image Plane Sfedauence

Figure 1-3, Texture Measurement
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typically 5x5 masks with integer coefficients. Only one-
dimensional convolution is reguired@, since the masks are
separable. The filtering could also be accomplished with

multistage 3x3 convolutions,

The filtered 1images are then processed with a
nonlinear "local texture energy” filter. This is simply &
moving-window average of the absolute image values. Such
moving-window operations are very fast even on dgeneral-
purpose digital computeré. The best window size depends
on the size of image texture regions. This study has
concentrated on 15x15 windows. Even smaller windows might

be useful if color information were available.

Figures 1-3a and 1-3b show & one-to-one mapping
between filtered images and texture energy planes. Twelve
measures per pixel were used in preliminary research.
Experience has shown that either variance or standard
devietion alone is sufficient to extract texture

information from the filtered images.

Variance is an average sgquared deviation from the
mean, For a zero-mean field, it 1is an energy measure.
The standard deviation is the square roct of this local
energy. It may be considered a "texture energy" measure.
A faster energy transform 1is the average of absolute
values within s window. All of these texture measures

give equivalent performande®

These statistics are more local than previously
studied frequency-domain texture measures. Freocuency

components are measured with very small convolution masks.

11
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(2) Composite

(b) Pixel Classification

Fige 1-4. Texture Segmentation Example
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Phase relationships within each window 2re meesured
without regard to any global origin. This method, similar

to human visuasl processing, is appropricte for textures

with a2 short coherence length or correlstion distance,

The next step 1in Figure 1-3 shows the linear
combination of texture energy plsnes into a smaller number
of principsl component planes, typicelly three or four.
This is an optional data compression step. It is tempting
to call the final images "perceptual planes," but it has
not yet been proven that they relate to human texture
perception. They do seem to represent naturel texture
dimensions, and to be more "reliesble" than the texture

energy planes.

The finazl output is & segmented or lzbeled image. 2
classifier assigning texture 1labels to the image pixels
can take either texture energy ©plenes or principel
component planes as input. Clessificetion is simple and
fast if texture classes are known s priori. Clustering or

segmentation algorithms must be used if texture clesses

B R = S ST wr ey ——————— L e YR A S e AT S e Rt e R e

are unknown.

Figure l-4a2 is a composite of the natural textures
used in this study. The first two rows'of 128x128 blocks
are from images of grass, raffia, sand, wool, pigskin,
leather, water, and wood. The Ilower-left auadrant is
composed of 32x32 blocks, and the lower-right aquadrent of
16x16 blocks. The 128x128 blocks have been individually
histogram equalized; the other bloéksxb;ve been equalized

by quadrant. The textures were chosen éfecjsely because

13
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they are difficult to discriminate. They are a worst cese

dataset.

We have applied &2 simple set of texture energy
transforms to the texture composite in Figure 1-4. Each
pixel was then classified into one of the eight texture
cetegories. Average classification accuracy is near B87%
for interior regions of the 128x128 blocks. The 32x32
blocks are well separated, and the 16x16 Dblocks eare
differentiated to an extent. We believe this perfomance
to be unmatched by any other texture classifier or image

segmentation system.




CHAPTER 2

REVIEW OF TEXTURE ANALYSIS APPROACHES !

Despite its importance, there is no generelly
accepted definition of texture. There a2re many models for i
the generation of particular texture classes [3], (4].
There are  numerous ad hoc texture discrimination
techniques. Yet there is no agreement on how to measure !

texture.

The eye must use the same feature extraction methods
on every texture field, regardless of source. We do not
know what these methods are, although there is indirect
evidence that edge detection is involved. We do know that

any retinal transform must retain enough information to

A T Rl Ao

distinguish different textures and suppress or ignore

information distinguishing eguivalent textures (3s ]

identified by human observers).

If computers could achieve the seme processing
results as humans, it would not matter how low-level data
reduction was accomplished. 1t is unlikely, however, that
we can ever simulate the activity of the humen cortex

without first learning the type of data it uses as input.

Julesz developed a basic test of human texture

\ perception [5]-[7] in which split images of two computer
generated texture fields are displayed. He found that

viewers can cspontaneously discriminate between textures

15




differing sufficiently in first- or second - order

probability densities. They cannot easily discriminaste

between stochastic textures differing only in third -order
statistice. Julesz conjectured that second = order
statistics are sufficient determinants of human texture
perception. This has led to the widespread belief that
second order moments or spatial frequency spectra are

sufficient measures of perceived texture.

The experiments were persuasive, but not conclusive.
Julesz's texture fields had only four gray levels and were
highly constrained. Because they were generated line by
line there could be no verticeal correlation. First- or

second ~order densities held constant for both fields hed

to be uniform, and when both were held constant there

could be no spaticl correlation whatever.

Recently Pratt, Faugeras, and Gagalowicz [8] extended
this work to texture fields with multiple gray levels and
controlled correlation in both spatial dimensions. Such
fields can mimic naturel textures reasonably well. Their
experiments have supported Julesz's conjecture. Observers
can discriminate such textures differing sufficiently in
first- or second -order densities, but not those differing
only in third order density. Furthermore, discriminzble
textures can be genereted having common mean, variance,
and autocorrelation function. Thus first-and second-order

; ! statistics may be sufficient descriptors of texture, but

the mean, variance, and autocorrelation function are not.

% e Tamura et 21. [9] have developed features correlating
1
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well with human perceptions of natural textures. They
have successfully measured coarseness, contrast, and
directionality. It should be understood, however, that
human observers do not interpret these words uniformly or
repeatebly. The texture messures ere not computationelly
simple, and the measured conceptc themselves cannot be
defined independently of the observer's culture and

experience.

Another perceptuel modeling experiment hes been
devised by Zobrist and Thompson [1]. Three artificially
generated textures &re displayed. The viewer decides
whether the first and second or the second and third are
more csimilar. This protocol gets closer to the mechanics
of texture perception, but the quantity being measured is
léft uncertein. Even simple changes in the spacing or
shape o0f texture elements ‘can  alter many stetistical

properties of an image.

Many other types of texture measures have been
proposed [10], [117. The remainder of this section
surveys the commonly used features,. Later chapters will

elaborate on the texture measures chosen for this study.

2.1 Statistical Features

The most powerful end cppropriste statistice for o
perticuler type of texture are those estimating parcmeters
of the genercsting process. A general vision system,
howcver, must use features common to many types of
texture. Cne way to find such features is to model the

humen visuel system.
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Natural texture dimensions can also be discovered by
studying homogeneous texture fields. Each field contains
variation inherent to that texture type. Different fields
have different types of veriation. Discriminant analysis
is an appropriate tool for identifying which are the :;
significant variations. It 1is only necessary that we
propose a set of texture measures; the analysis determines
which linear combinations are useful.

The simplest texture properties are those based on
single-point statistics. In monochrome imagery the only
point property is luminance. Color images originate with
an infinite number of degrees of freedom, commonly reduced

to three rrimary responses by modern sensors. Some sSensor

systems record as many as 24 spectral bands.

The three primsry responses are by no means the only
way to record and use color data. There is 2 bewildering

array of information-preserving color transformations

[12]. Standard color coordinates systems have
nonremovable singularities that can interfere with
numerical analysis [13]. The human visuzl system seems to
perform 2 complex mapping from spectral input to perceived
color [14]. It is not known whether this transformetion

occurs before or after texture recognition.

A multispectrezl image is a vector function of a two-
dimensional domain. Statistical methods may be used to
classify the pixel wvectors to & known set of source
classes, or to «cluster the vectors to determine 2
posteriori classes. Pointwise transformations of the

pixel vectors may be used to reduce complexity of the




classifier.

Such pointwise statistical analyses lack spatial
context, the essence of texture. It is true that first-
order statistical properties satisfy the criterion of
shift-invariance, but they are also inveriant to any
rearrangement of the image pixels. It is not surprising
that such methods have failed to metch the classification

accuracy of trained humans.

Moving-window or convolution methods may be used to
compute texture plsnes. These are continuously applied
region-to-point transformations. The texture planes mey
be treated as additional spectral Dbands, introducing
spatizl dependencies into the znalyses. We shall study

thesec "spatial-statistical" methods in Chapters 6 end 7.

2.2 Autocorrelation Features

Texture 1is both spatizl and statistical. Tt is
spatial since texture is the relationship of groups of
picture elements. Nothing can be 1learned about texture
from an isolected pixel, and little from a histogram of
pixel wvalues. Monotonic trensformations leave texture

largely unchanged.

There is good evidence that the human visuel system
does not respond to spatial dependencies of higher then
second order. The relationcship between any two pixels may
be significant, but their joint relationship with oany
third pixel in an image field is not. This suggests the
digitel autocorrelation function as a matrix of texture

descriptors.
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Mathematically this function is defined as

I(r,c) I(r+i,c+3)

C(irj) E e cccc e ————————

Tt is convenient to restrict r and ¢, the row and column
indices, to lie within the window; this is equivalent to
assuming that the image function 1is zero outside the
window. Note that i1 end j, the shift indices, mey take
negative values; the function is symmetric about the

origin.

The autocorrelation function of an image measures how
well the image metches a shifted version of itself.
Autocorreletion is nonnegative (for nonnegative images)
and takes its maximum value of 1.0 a2t shift (0,0).
Correlation drops off exponentially with increasing shift.
Typical photographs have nearest-neighbor (or single-pixel
shift) correlations above 0.95. Texture blocks used in
this study have nearest-neighbor coefficients near 0.70,

with coefficients as low as 0.30 for some 15x15 blocks.

The autocorreletion function contains two types of
information. One is texture coarseness, as revealed by
the slope of the central peak. Autocorrelation of a
coarse texture Jecays very slowly with increzsing pixel
separation. The other type of information concerns
periodicity. Bny requlaerity in size or spacing of texture
elements will be reveecled zs an cnergy peak within the

zutocorreclstion function. Man-made orchards and fields,
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for instance, have reguler spzcings cppearing as periodic 4,

amplitudes in the auto-correlation function.

The relationship between correlation and coerseness

in seven Arctic &aerial photogrephs wezs investigated by

i s

Kaizer [15]. He messured the image distance 2t which
autocorrelation dropped to 1/e. (Circular symmetry of the
autocorrelation function was assumed.) Then 20 subjects

ranked the pictures in terms of coarseness. He found

Raacks

almost perfect agreement between l/e distence and

. perceptual coarseness. 1

Unfortunately the autocorrelation function of most T
} natural textures are very similar. Description of the
correlation function by its first few spatizl momente hes
little power unless correlations are measured over very
large windows. This would be inappropriste in image
analysis, since relatively small regions of texture must

be identified.

The autocorrelation function is still being proposed i
as a source of texture features [8], however, and as the

basis for linear-predictive texture synthesis and

segmentation [16]1-[18]. Usefulness of autocorrelation

texture features will be explored further in Chepter 5.

A generalized autocorrelation measure is reported by

j ' Haralick [11). It is based on the "mathematical

morphology" binary filtering theory of Serrz and Matheron

as wused in the Leitz texture analysis system [19],

Instead of summing terms of the form I(r,c)I(r+i,c+j),

texture is measured by summing G(r,c)H(r+i,c+j), where
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G(r,c) and H(r,c) are functions of the neighborhood of

image point (r,c). Another way of producing the same
result is to convolve functions G and H with the imaqge,
then cross-correlate the resulting fecatu-e pleanes. I1f G
and H zre identicel, this reduces to autocorrelation of »a

single feature plene.

Some textures have regular structure best identified
in the frecuency domain. One could transform the
autocorrelztion function and use Fourier coefficients as
texture measures. The &autocorrelation function, however,
is usually computed in the frequency domain by Fourier
transforming the image itself. Further, the Fourier
transform can be obtzined optically. For both theoretical
and computational reasons, freaguency methods have largely

supplanted correlation methods.

2.3 Spatial Frequency Features

Textures composed of repeated, reqularly spaced
elements are well described by their Fourier components.
Natural textures are seldom so reguler, but can also be

descriminated by freguency domain features.

It has been shown [20) that Fourier features provide
useful information for aerial c¢lassification and for
identification of texture gradients. Performance of other
transforms has 2l1so been investigated. Hademard and slant
transforms, for instance, have been found [21] to work as

well as the Fourier for aserial clessification,

Lendaris and Stanley [22) did the pioneering work in

Fourier texture discrimination. They illuminated circuler
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sections of gzerial imagery and sempled the Fraunhofer
diffraction patterns cast by a lens. This diffraction
pattern corresponds to the magnitude of the Fourier
transform. (Neither they nor subsequent researchers seem
to have investigated the Fourier phase component as a
texture measure,) They integrated the transform energy
over radial wedges and over concentric rings, a sampling

scheme still used in some commercial systems.

Wedge features measure directionality in the original
image. Linear classifiers using these features have
performed well in recognition experiments, although their
ability to handle rotated texture fields 1is open to
guestion. Annular features have proven to be less
valuable; apparently all netural images have similar
spatial fregquency spectra. Bajcsy end Lieberman [231
found annulsar components valuable for measuring element

size in "blob-like" textures.

Other experimenters [24}-[26] have wused digital
techniques to transform texture fields. Special FFT
algorithms and hardware make large transforms practical,
and moving-window techniques [27] reduce the cost of

repeated small transforms.

The chief difficulty with transform methods is that
they must be computed over large windows. Small window
transforms reveal only high-frequency information,
negating the theoretical justification of the transform.
Further, single freguencies are seldom impcrtant or

reliable. The spectrum must usually be reduced to a

23

ceansiie. Aafib ki




".-'l

smaller number of feetures by computing functions of the

spectrum.

2.4 Co-occurrence Features

Freguency-domain measures have 1little theoretical
justification for randomly spaced texture elements or for
small window sizes. They are also inappropriate for
nonstationary textures or mixed textures within a sampling
window. All of these problems exist in the segmentation
of natural scenes. Correlation techniques are one way to
analyze texture in the spatial domain; co-occurrence

techniques are another.

A co-occurrence matrix is an estimate of the joint
probability density function for pixels separated by a
particuler row and column shift. The 1i,j-th element is
the number of times pixels with the luminance values i and
j occur in a specified spatial relationship. Often this
matrix is normalized by dividing each count by the total

number of pixel pairs.

Transition probabilities are sensitive to contrest
and average luminance o¢f an image. Tt is therefore
necessary to standardize each image or window by scaling
or histogram modification. This will be discussed further

in Section 3.4.

Co-occurrence approaches are an outgrowth of the
Markov model of texture generation [281-130]. Julesz (5]
was the first to use higher order traensition matrices for
texture synthesis. These matrices are equivalent to

nearest-horizontal-neighbor co-occurrence matrices,
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sections of szerial imagery and sempled the Fraunhofer
diffraction patterns cast by a lens. This diffraction
pattern corresponds to the magnitude of the Fourier
transform. (Neither they nor subsequent researchers seem
to have investigated the Fourier phase component as a
texture measure.) They integrated the transform energy
over radial wedges and over concentric rings, a sampling

scheme still used in some commercial systems.

Wedge features measure directionality in the original
image. Linear classifiers using these features have
performed well in recognition experiments, although their
ability to handle rotated texture fields 1is open to
guestion. Annular features have proven to be less
valuable; apparently all natural images have similar
spatial freguency spectra. Bajcsy end Lieberman [231
found annular components valuable for measuring element

size in "blob-like" textures.

Other experimenters [241-[26] have wused digital
techniques to transform texture fields. Special FFT
algorithms and hardware make large transforms practical,
and moving-window technigues [27) reduce the cost of

repeated small transforms.

The chief difficulty with transform methods is that
they must be computed over large windows. Small window
transforms reveal only high-frequency information,
negating the theoretical justification of the transform.
Further, single frequencies are . seldom important or
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smaller number of features by computing functions of the

spectrum.

2.4 Co-occurrence Features

Freguency-domain measures have little theoretical
justification for randomly spaced texture elements or for
small window sizes. They are also inappropriate for
nonstationary textures or mixed textures within a sampling
window. All of these problems exist in the segmentation
of natural scenes. Correlation technigues are one way to
analyze texture 1in the spatial domain; co-occurrence

techniques are another.

A co-occurrence matrix is an estimate of the joint
probability density function for pixels sepsrated by a
particuler row and column shift. The i,j-th element is
the number of times pixels with the luminance values i and
j occur in a specified spatial relationship. Often this

matrix is normalized by dividing each count by the total

number of pixel pairs. .

Transition probabilities are sensitive to contrast
and averade luminance of an image. Tt is therefore
necessary to standardize each image or window by sceling
or histogram modification. This will be discussed further

in Section 3.4.

Co-occurrence approaches are an outgrowth of the
Markov model of texture generation [281-130]. Julesz [5]

was the first to use higher order transition matrices for

texture synthesis. These matrices are eqguivalent to

nearest-horizontal-neighbor co-occurrence matrices,
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although normalization is applied to each row separestely

instead of to the matrix as & whole. Similar texture

statistics have been used by Darling and Joseph [31] and
by other researchers to discriminate cloud types, cell

types, and textures.

Co-occurrence matrices for arbitrary row &nd column
shift were first proposed by Rosenfeld snd Troy [221 and

by Heralick et al. [33]), [34]. Many subseaguent studies

. [351-[39) have proven the vazlue of these measures for
* aerial, X-ray, and microscopic imagery. Comparetive
. studies [(40], [41} have wverified the superiority of
} co-occurrence statistics over spatial frequency and othoar

early texture measures.

The number of co-occurrence matrices thst can be

R

computed is very large. Row shift cen vary from zero to

zlmost the number of window rows; cclumn shift can vary

over & similar rénge. Negetive <cshifts are also
permissible, although there are symmetrvy considerations.
Each combination generates an entire co-occurrence matrix.
For texture segmentation by pixel clessification, eech
matrix must be computed around each image pixel. Clearly
it 1is necessary to choose some small subset of these
matrices to be computed. The best set 1is undoubtedly o

function of the texture discrimination tsask.

b, The size of each co-occurrence matrix is also &
problen. Most 1images are recorded with eight bits per
pixel, or 256 grey levels, A few opticel systems provide

twelve bit resolution, or 4096 grey levels, Joint
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probability matrices, however, are unreasonably large for
images with more than 16 gray levels. Reguantization to

this number of levels conceals low contrast textures.

Haralick uses symmetric co-occurrence matrices
(equivalent to averaging the matrix with its transpose).
In some studies, he has reduced storage further by
assuming rotational isotropy, 1i.e. by averaging =2l1l
matrices computed for the same relestive pixel shift in
different directions. It has been shown [411, [421 that
even the symmetry assumption is too strong for a simple

Markov model of texture.

There may be an adaptive quantization scheme which
setains the character of low-resolution textures, Cne
approeach is iterative histogram modification 141371,
Another is to bypass the co-occurrence matrix itself. The
matrix is usually reduced to a vector of features by
computing two-dimensional moments. Moments that are
linear functions of the matrix elements can be computed
directly from the texture image. Examples are sums of
probability mass along the major and minor dizgonals. For
such moments, the co-occurrence metrix is simply a

theoretical intermediary; it need not be computed.

Individual elements of a co-occurrence matrix do not
make good features: matrix elements are subject to large
fluctuations due to sampling variation, the number of
matrix elements is learge, and sampling or unraveling of
the matrix ignores the two-dimensional structure of the

datea. These objecticns can be met by usina spatial
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moments of the matrix as features.

Many weighted momecnts heve been suqgested. BRarelick
et el. [34] proposed a set of 14 moments, gomo later
parameterized to form femilies of moments [111. Pressman
[38] suggested seven more moments; none were found useful.
Chang [44] has suggested a principal components approach

to extracting the significant information.

An entropy or ccnspicuousness transform hss also been
proposed by Heralick [45]1, [111. This is one way of
generating a texture plénc without computing co-occurrence
matrices for each point. Co-occurrence matrices are
computed for pixels in & lerge erea, possibly the entire
image. Likelihood of each pixel is computed by locking up
its gray lcvel and that of its neighbors in the matrices.
The likelihood, or some relzted function, cen then be used
in texture segmentetion. "Common" pixels are removed e&s
one segment, and co-occurrence cstetistics are then
rccomputed for the remaining pixels., The segments oare
thus identified without the nrecessity of classifying
pixels as to texture type, much in the menner of the
Chlander segmenter [46]. These 1likelihood mecasures eare
similar to the conspicuousness transform of Winkler and
Vattrodt [47] end the linear prediction techniaues of

Deguchi and Morishite [18].

2.5 Structural Features
A composite texture 1is one composed of primitive
elements. A description of such a texture, in terms of

observed primitives and their reletionships, is called o
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structural description, The description should be
sufficiently flexible that a class of equivalent textures
can be genereted by using similar primitives in similar

relationships.

A texture primitive is a maximal connected set of
pixels having some property. Very complicated primitives
have been used: Lu and Fu {481, [(49] derive sets of
primitives from arbitrory imeage windows. At the other
extreme, individual pixels may be considered texture

primitives.

Simple texture fields cen be completely characterized
by a set of primitives and a placement rule. FExamples ére
characters of text or uniformly spaced polka Adots.
Sometimes the plecement rule may be stochestic, as with
irregulzrly spaced polks dots. Sometimes primitives may
overlap, as with tree leaves; sometimes they add or "show

through."

Primitive elements may also have stochastic
attributes. They mey differ in size, shape, orientation,
color, or texture. These attributes mey be independent or
interreleted. They may be correlated with attributes of
nearby primitives, and the relationships may change slowly

across a nonstationary texture field.

Even in uniform texture fields, it is difficult to
infer the primitive types and the placement rule, Some
textures eare cmbiquous, with more than one choice of
primitive. The most cppropricte primitives are those

corrcesponding tc physical propcrties of the the image
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source. B general vision system, however, cannot be
strongly linked to a perticuler image source. Universeal
primitives must be those occurring in nearly all texture
fields. Examples are mexima, saddle points, lines, edges,
and regions of uniform luminance. Such "gub-primitives"
are also useful in structural analysis of untextured image

regions [50].

It 1is ©plausible that these elementery texture
primitives are the correct level at which to define
texture. Many biological visuval systems contain spot 2znd
edge detectors. 1In fact, there is evidence that the humen
visual system transmits only edge informetion to the brein
(141, (51). Tt seems reasonable, then, to describe a
texture by relationships of edges within 1it, or by

relaticaships of lines, local maxime, etc.

The structural approach to image understanding is to
locate primitives and 1link them together into larger
structures. 2 less rigid approach to texture description
is often used; it might be called "structureal -
statisticel."” Texture elements are identified and their
properties measured, then spatiel distribution of the

primitive properties is described statisticelly.

The simplest texture measures record the observed
mixture of primitives, without regard to their spstial
relationships. These measures oare¢ appropriate for
textures genercted by randomly pleced or randomly selected
texture elements. Tt is =zssumed thoet each element is

independent of its neighbors; the texture may thus be
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described by its mixture density.

More complicated texture meesures are needed when the
primitives themselves have variable properties. We mey
still assume independence between primitives, but must now
use a more complex probability model. Tt becomes very
difficult to estimate the multidimensioneal density
function of & texture field unless primitives are very

numerous snd simple.

We may also have to measure the spatiel relationships
between primitives. Variables which may be mutually
dependent are the texture element types, properties,
orientations, and relative spacings or relationships. Tt
is believed that only pecirwise relationships eéere of

importance to human perception [71.

It may be sufficient to reccrd the observed mixture
of element peirs. Zucker [52] hes suggested estimation of
the joint probability distribution for primitive pairs in

a particular spatial relationship, e.aq

nearest neighbors.
More powerful methods éere reauired when texture element
properties ané spacings are releted., Tt is not known how

much power is necded for =anealysis of natursl textures.

One primitive form is the maximal connected region of
constant gray level. Maleson et al. [531 suggest using
ellipsoidal approximations to such regions to simplify
shape description. Measurable ©properties eore size,

elongation, orientation, and tonesl statistics.

Galloway [54) described coarscly aquantized textures
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in terms of gray level run lengths. Runs were measured in

several directions, each generating a metrix of gray level

versus run length counts. This is similer to
co-occurrence techniques. Comparative studies have shown
co-occurrence measures to be superior for terrain
classificetion [4G] and characterization of Markov

textures [41].

Intensity extrema are the basis of several popular

texture measures. An extremum is an image pixel brighter

or darker than any neighboring pixel. Several researchers
[55], [56] have analyzed scan-line extremea. Measurable
gualities include peak height and width, valley depth and
width, inter-peek distanc.s, and density of extrema.

These aquantities ere not trivial to measure; several

prp—r

definitions are in use, The desirability of extracting

f features at several resolutions hes led to hierarchical

RPN )

decompositions of scan-line waveforms [57]1, [11].

Texture 1is a two-dimensional phenomenon; it makes
sense to seek two-dimensional extrema. Associated with

each peak is & "mountain" or connected region that may be

reached by & monotonically descending path from that peak
along. Such "reachebility sets"‘ can be computed by
iteretive &lgorithms. Texture features which mey be
extracted from these mountains include height, ares,

) circularity, elongation, 2nd direction of elongation [32]1.

i i Cne way to record these distributions is with
generalized co-occurrence metrices [58]. Each measurable

property is guantized to a smsll number of levels. Then

ﬁ P TSP
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the observed traits are tabulated for 211 peirs of

adjacent texture elements, adjacent texture elements in 2

given direction, or elements within a given radius of each

other.
Generalized co-occurrence methods suffer from
computationzl complexity. It is not easy to Jocate

texture primitives and to measure their attributes, nor is
it triviel to identify an element's nesrest neighbors.
Another weakness 1is that the co-occurrence matrices are
quite difficult to update if the image window is shifted.

This makes it difficult to compute texture properties

around each image point.

i 2.6 Texture Segmentation

| A texture measure should only be dJdefined over =
uniformly textured region. Measures computed over @&
multi-textured region will often be a2 weighted average of
componen£ texture measures, but this is not quaranteed. A
homogeneity measure, for instance, will be very different
for & mixed texture than for any of 1its components,
Texture classifiers c¢can be tricked into completely

erroneous identificestions by composite textures.

A texture clzssifier must be given regions of uniform

texture over which to compute festure vectors. .

-

segmenter must be able to find these regions without 2
priori knowledge of the textures or their context, The
puzzle of how to combine these two has yet to be solved.
A solution must exist, however, since biologiczl wvision

systems are able to segment textured imeges.




Existing segmentation methods all recuire that region
interiors be smoother than border neighborhoods. They sare
thus unsuitable for 1locating textured regions unless
textures can be transformed to one or more feature planes
with the property of region homogeneity. Chapter 8 will

present & good method of computing such feature planes.

The constituents of texture zre so many and sc varied
that it 1is difficult to combine them in a segmentation
algorithm. One method [46] is to segment on the cheapest
or most effective feature first, then on the next best
feature. This can lead to sequence-dependent results, but

is particulerly effective in purposive vicion systems.

-

A method particularly suited to texture segmentation
is pixel <clessification, 1long wused in eanalysis of
multispectral LANDSAT images. Fach pixel has oan
associzted vector of spectral luminance responses. Thie
vector can be augmented with any number of texture
features computed over the immediate neighborhood of the
pixel. A classification algorithm then ascsigns a class
label to the pixel. Texture classes are usually known 3
priori, but may also be derived from the image by cluster

analysis.,

Suppose that we wish to clessify an 8x8 image window
as one of several texture types. The method of maximum
likelihood could be used if we had enough information
about the texturc classes., We would estimete likelihood
of the observed pattern under eech hypothesis, then choose

the texture cless with highest likelibood. The trouble
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with this approach is that the required probability
distributions are 64-dimensional. Even for binary
textures it is nearly impossible to estimate such large
distributiohs. (264 = 1019 coefficients are recquired for
a full histogram.) The same amount of storsge is needed

for 4x4 blocks of 16 gray levels.

'Nonparametric methods have been proposed for
estimating and storing 1§rge distributions; see, for
example, set covering procedures of Read and
Jayaramamurthy [59] and McCormick and Jeyaramamurthy [60]1.
It seems sensible, however, to assume a parametric form

for the distributions whenever it is possikle to do co.

Image gray levels seem to be well characterized by
statisticel moments. Bhuja et al. [611 show that the
first few moments are as useful as the entire distribution
for classifying image regions. Some clessification
procedures require that a psrticuler parametric model be
chosen (e.g. Gaussian or Poisson), but nearest-centroid
technigques require only statistical moments. Chapter B8 of
this dissertation will develop 2 texture anelysis method

based on nearest-centroid pixel classification.

2.7 Summary

No one has yet developed a completely adequate theory
of texture analysis. Indeed, no such theory can be
developed independent of the myriad physical processes
producing textures. It is possible, however, to correctly
segment and identify image textures using ad hoc measures

and simple algorithms.




Some sets of texture measures are of more interest
than others. The set used by the human visuazl system is
of paramount importance, but not yet identified.
Theoretically tractable and combutationally simple feature
sets are also important. Any useful set must be
computable and sufficiently complete to characterize
textures found 1in e given sapplication area. Qther
desirable properties g2re feszture 1independence and the

ability to synthesize 2 texture from its feature velves,.

Structural methods first locate primitive elements,
then analyze spatial reletionships. The texture must have
identifiable primitives, and the vision system must be
able to determine which primitives &re present. It is
much haerder to &nalyze such textures than it is to
generate them. In natural images, edioining texture
fields may be obscured by noise and blur. Fven with
complete knowledge of texture types, it may be difficult
to 1locate the primitives. We may have no & priori
knowledge, making it necessary to jointly estimate the
segmentation boundaries and the texture model within each
cegment . Such methods are too knowledge-dependent for &

preliminary texture segmentation system.

The other texture models of this chepter are worthy
of investigation as micro-texture measures. We shell test
the efficacy of correlation, co-occurrence, and
statisticel methods in Chapters 5 through 6. Tn Chapter 7
we shall introduce several sets of texture measures which
may be considered either statistical or &an unusuel

frequency-domain epproach. Chapter 8 will develop the
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best of these texture measures

system.
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CHAPTER 3
EXPERIMENTAL METHODS

An optimal vision system would have components that
are Jjointly optimal rether then individuslly optimal.
Unfortunately texture segmentation is too poorly
understood to allow even componentwise optimization, We
are faced with a chicken-and-eqgg puzzle: each step must be
developed in the context of all others. The best we can
do under the circumstances is to fix those components for
which we have & rationale, and to iteratively improve ell
other components. Fixed choices are discussed in this
chapter; experimentzlly determined results are given in

following chapters.

3.1 Segmentation

We desire a segmentation method that is fast,
insensitive to noise, and theoretically tractable. Tt
should use 1little storege, work with any texture type,

detect both large and small regions, and adjust for a

priori probabilities or external knowledge.

Any segmentation method might be made to work. We
shall restrict our attention to pixel classificetion, 7Tt
satisfies a2ll] of the above recuirements, provided that

suitable texture measures can be found.

Two cases must be considered: true classificetion end

blind segmentation. True classification requires that the
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possible region types be known beforehand; we need simply
assign a region type to each pixel. Plind segmentetion is
the grouping of pixels into regions without a priori
knowledge of region characteristics. The classification
epproach to blind segmentation uses cluster analysis to
determine the region types present, then classifies each
pixel to one of these types. This could be followed by an
editing phase that would ettempt to assign meaningful

labels to the regions.

Either case requires e <classification algorithm.
There are many to choose from, including nearest-neighbor,

k-nearest-neighbor, meximum 1likelihood, and seaquential

decision methods. For true classification, we shall
choose one of the simplest: nearest centroid
clessificaetion. This &lgorithm is fast, -eesy to

implement, and reguires little storage. Tts theoretical

basis is documented in Appendix C.

The nearest centroid slgorithm works well providing
that suitable texture dimensions can be found. 1t is
necessary that texture samples form well-separeted
globular <clusters in the feature space. Elongated
clusters, clssses with multiple clusters, and dense
clusters within sparse ones would 2l1 <cause errors
evoidable with more sophisticated techniagues.
Fortunately, the statistical technicue of discriminant
analysis is aveilable to identify good features. We shall
2ssume that optimizetion of the feature space is a
sufficient substitute for joint optimizetion of the

feature space and classificetion algorithm,




Statistical anzlyses are of two types: those with o
known objective function and those analyzing the structure
of data without regard to an objective function. The
former type is characterized by work of Tamura et al. [9],
in which perceptual scales for coarseness, directionality,
and other features are constructed from observers' ranking
of images. These scales are then matched by linear
combinations of measured features. Another exemple is the
work of 2obrist and Thompson [1], in which perceptual
effects of known texture transformations are measured and
modeled. The limitations of these methods 1lie in the
experimenter's ability to invent scales measuring

fundamental textural or perceptual dimensions,

The other statistical approach seeks fundamental
texture dimensions in the correlation structure of the
input data. This study uses discriminant analysis to
identify useful features for texture classification.
Discriminant anglysis is 8 feirly well developed
statistical method for choosing - linear combinations of
features which best classify data from a set of source

classes.

Available methods are all linear analyses.
Nonlinearities may be introduced by including products and
quotients of texture measures, but such terms are seldom
fundamental and are difficult to interpret. Of course,
the analysis can be no better than the data. After
studying one analysis, it is often possible to compute

better features as input to the next.
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Useful texture features may correspond to human
visual measures or to natural texture dimensions. It has
not been proven that nstural texture dimensions exist, but
there is evidence that humans and some lower animels have
very similar perceptions of texture. It secems likely that
natural texture dimensions exist and that naturzl vision

systeme heve been selected and trained to use them.

Research presented  here incorporates perceptual
factors in three indirect ways. First is the choice of
images to be used. This study uses 3 number of images
that are visually similer, yet differing in some obvious,
unspecified manner. This comes as close to & controlled
experiment as can be managed with netural textures. The
putpose of the experiment is to learn whet features make

the images visuelly distinct.

Secpnd is the choice of texture measures to be
computed. Some of these may be chosen for theoretical
reasons, but most simply seem pleusible. fome measures
attempt to model anatomical processing, such es edge and
spot detectors. Others are chosen to measure hypothesized

differences in the selected texture images.

Third 1is the analysis of statisticel results. Here
the experimenter's subjective knowledge enters.
Statistical analysis will eliminate many bad features, but
may discover chance combinatiohs of features with
significant discrimineting power. Tt 1is up to the
experimenter to decide what is being measured by feature

combinations, which of several correleted festures oare
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most fundamental, and how to modify features to make them

better.

3.2 Feature Selection

Classification accuraecy is a function of the number
of features aveilable and the joint information of those
features. It is also & function of the method used to

select or combine features.

The primery tool of this tesearch is discriminant
analysis. Fezture vectors computed over image windows are
fed to the discriminsnt routines of the Subroutine Package
for the Sociel Sciences (SPSS8). These descriminant
algorithms ere documented in Appendix C. Source textures
are known, so that cluster analysis is unnecessary.. The
goal is similer, however: to find linear combinations of

features that separate data vectors into compact groups.

Cne could search for fundemental tecxture features by
analyzing differences between pairs of images. Tt s
likely, however, that each pair differ along a comktination
of fundamental dimensions. The analysis might identify
some discriminating features, but would leave unclear the

nature of the true texture dimensions.

Analyzing many textures at once is more likely to
discover fundamentel dimensions, if they exist.
Discriminant routines identify the best axis, then the
best orthogonal axis, and so on. The axes are best in the
sense of 2 Karhunen-Loeve or eigenvector coordinate
tronsform. 1t is quite 1likely that the human visua)

system uses correlcted feature measures, but the expense
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of such an analysis is not justified by the quality of our

present texture descriptors.

Discriminant functions, computed as eigenvectors of
certain statistical matrices, serve three purposes. They
identify natural data dimensions, permit data reduction
for simpler classification functions, and provide natural
axes for visual display of clusters. & display of dets
points in the primury discriminant plene conveys & great
deal of intuitive informefion difficult to discern in

tables of numbers.

A more guantitative description is provided by the
weights of features used to compute the axis values.
These coefficients are given for input variebles
normalized to zero mean and unit wvariance. The
coefficients thus show relative weight or importance of

each component feature.

Computed texture dimensions must be judged by their
ability to clessify the input vectors. Techrically it
would be better to classify an independent set of texture
vectors, but classification of the treaining set 1is o
useful experimental tool. More rigorous validation need

be applied only to the final texture model.

Two data clusters in a multivariate space are
maximally separated along a single axis. Three clusters
cen be discriminated in & plane, i.e. along two axes. The
number of possible discriminant axes is one less than the
numker of groups. The number of usefu] discriminaent

functions may be even smaller if date clusters tend to
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line up or occupy low-dimensional subspaces.

1 Classification functions, one for eech texture group,

cen be derived from the discriminant functions. R dete
vector may be classified by evaluating eeach function and
assigning the vector to the aroup with the highest score.
The method assumes multiveriate normal distributions with
identical covariance structure. Prior probebilities for

the classes are usually assumed equal.

. 3.3 Texture Data

In &n experimcntal study, the results c¢an be no

better than the input deta. We recuire a set of uniform

]
f texture fields large enough to provide adeocuaste samples of
each texture. Ideally this training set should come from i
] .
a terget application area. For & general vision system,

however, cach texturc must be a "natural" one, a2nd the set 1

must include a range of naturel texture dJdimensions. We

avoid artificielly generated textures, such s sinusoidel
gratings, because they would favor the Fourier transform

an¢ other frequency domain measures.

The texture images we have chosen are from an album

by Brodatz [62]1. High quality prints obtained from the
photographer were scanned and digitized at the USC Image
Processing Institute. The 1images are 510x512 pixels

quantized to 256 gqgray levels. This is sufficient for

extraction of 256 nonoverlepping 31x31 blocks from eech
texture field. tfost of the texture samples in this study
! will be 15x15 feature plane blocks computed within 17x17 ;
or 19x19 blocks of image data. The larger image window is i..
P
RN ~
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used only to prevent contamination of ¢the samples by
border effects, and is unnecessary when texture measures

are computed for every pixel in an image.

Initial date anelyses for this study were carried out

ot o i Lt

on the four PBrodatz textures 1in Figqure 2-1: Grass,

Raffia, Wool, and fand. Prectt et 21. used 64x64 blocks of

these same images for visual discrimination experiments

[8] and for theoretic?l discriminsbility studies [63]. ’i
Ashjari [64]) hes investigeted singuler value decomposition ‘
ag & tool for discriminating 32x312 blocks of these Q
textures. Additionel texture dimensions have been
introduced with the textures 1in Figure 13-2: Pigskin,

Leather, Water, and Wwoodld.

The textures have been chosen preciscly because they j
are difficult to discriminate. They &re 2 worst case
dataset. Raffia, Wool, and €fend may be considered

cellular textures with similar cell cizes. GCress and fand
heve similar statistics, with the main difference being
the e¢xtended edges in CGrass. Pigskin has statistics
similar tc¢ those of Sand, but lacks the cellular edge
structure. Leather hes edge structure similar to Cress,
a'though the textures are perceptually quite different.
The Wood and Water images have much stronger verticeal

structure than Grass.

3.4 Preprocessing
The texture imeges were not taken under completely
controlled conditions. They differ in 1illumination,

contrast, and possibly filrm type or develeoping process.
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(b) Raff

(a) Grass

wWool
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Figure 3-1. Experimental Textures
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(e)

Pigskin (f) Leather

(g) Water (h) Wwood

Figure 3-2. Additional Textures
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These differences introduce monctonic trensformations of
the 1image function, and we must design our texture
analysis system to be invariant to them. We shall not
worry, however, about spatial transformations such as
geometric warp and linear filtering. The removal of known
warps 1is well  understood, but estimation of spatial
transformations from texture date awaits &  better

understanding of texture.

There are two approaches to compensating for unknown
monotonic transformations. Cne is to alter the entire
image, reducing it to some cenonic2l form. The other is
to develop texture measures invarient to monotonic

trensformations.

We have chosen a compromise technique: histogram
equalization (65], [66] of the entire imsge coupled with
texture measures compensating for local meen and standerd
deviation. This partially corrects for an effect noted by
Sklansky [67]:

Most images are dominsted by low freguencies that
carry little information about the scene. These
low freguencies consume & 1large renge of gqgray
level guantization cells with little benefit to
the viewer. Hence before any histogrem
transformations are carried out it is useful to
suppress (but not eliminate) the 1low cspatisal
harmonics... [p. 240]

The texture fields used in this study ere sufficiently

uniform that prior filtering would gain little.

There are several rationales for histogram
egualization. Sklansky sees it 8s &n equalization of
local contrast across an image. Other authors heve
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considered it & meximum entropy transform since it
maximizes the &mount of information conveyed by 2 qiven
number of gray levels. Certainly the transformation
improves the zppearance of low contrast images, but this
is true even 1if the number of grey 1levels (hence the
information content) is greatly reduced. Frei [681 found
histogram hyperbolization even more visuzlly pleasing; it
is believed that this shape 1is converted to & uniform
histogram by the logerithmic response of the humen eye.
Ashjari [64] uses histogram Gaussjenizetion to prepare
texture data for classgifiers based on Gaussian

assumptions.

1t should be noted that such standerdization
csecrifices information. Sklansky [671 reports:

We have found that certain diagnostically
cignificant textural feetures in xeromammograms
are strongly related to infreguently occurring
gray levels in the tails of certain shzpes of
histograms. BEecouse these qgray levels occur
infrequently, histogram equalization inhibits
rather than enhances the extrection of these
features. [p. 2431

Conners and Harlow [69] founéd, however, that histogrem
equalization was essential for proper enelysis of

radiographic imeges.

Images normalized to & common mean and stendard
deviation are eczsily discriminated by their skewness and
kurtosis measures. We heve zpplied histogram ecualization
to remove all first-order differences. This 2lso finesses
the probleh of whether to meesure image luminence or
density, since the standardizetion will give the same

result for either.

R
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Cur histogram egualizetion routine is gqgiven in

\

Appendix A. It follows Conners' algorithm [41], modified

to fit new quantization levels to a constant percentage of

L i

totel probability rather thsn 2 percentage of remeining
probability. For natural 1images this algorithm works

well, although it will give slightly different results ]

when starting frem one end of a2 histogram than it would if
started from the other end. 1t is possible to construct
pathologicsl «cases for which the mean square error
. compared to a true uniform histogram is much greater than
for optimal equalization as found by a search algorithm

§ . [70].
r

Global equalization is valid for experimental studies
on reasonably homogeneous texture images. A general
vision system, able to identify textures in scenes with
varying illumination, —reqguires stronger equalization.
Either the computed texture measures must be invarient to
luminance and contrast changes, or adeptive local

egualization must be used.

This study uses a simple adaptive equalization.

First global equaliiation is wused, then each sampled

texture window 1is scesled to ha&e a constent mean and
standard deviation. The method is not suitable for
moving-window equalizztion around each image point, but
the same effect could be achieved with luminance-invariant
end contrest-invariant texture measures. Texture
discrimination results will be reported for both the

globzlly equalized and the adaptively eocualized texture

samples. There should be little difference if the source
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imeges are homogeneous.

3.5 First-Order Statistics

A texture field is é&n extended entity composed of
repetitions of similar local primitives. We reguire,
therefore, global measures of 1local properties. These
global meezsures must be statistical since they must be
shift-invariant and insensitive to random texture
variations. They should slso be eessy to compute since

large windows are involved.

CGlobal features characterize the whole texture rather
than its elements. The computing window must be large
enough to enclose a representative sample of the texture,
so that feature values change 1little as the window is

shifted within & texture region.

The set of statistical moments are particularly qood
global measures. Consider & window pleced on zn image, or
on any feature plane computed as a transform of the image.
One likely texture measure is the average velue within the
window. Another 1is the stendard deviation. Skewness and
kurtosis are also good candidates, 2lthough somewhet
harder to explein. Tt is known that the histogram of &n
8-bit feature plene cen be completely cheracterized by a
set of 256 such statistice, Statistical moments above the
fourth, however, are likely to be unreliable and to have
little energy or importance. This study will determine

whether the first four moments are useful.

The basic stetisticel moments of z window 2re
k
Mk = E [I (r,c)]
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where E denotes the expectation operator. The moments may

be estimated by

Mk = (1/nd) > 1*(r,c)
r,C
It is convenient to standardize higher moments to remove

the effect of mean and standard deviation. Ctatistical

moments used in this study ere of the form
AVE = E [I(r,c)]
VAR = E [(I(r,c)-AVE)?]

SKW = E [(I(r,c)-AVE)3/ var3/?

]
4 2
KRT = E [(I(r,c)~-AVE) / VAR”]

These corrected moments may be estimated by

AVE = Ml (3-1)

VAR = M2-M12 (3-2)

SKW = (M3-3(M1) (M2)+2M1°%) / var>/? (3-3)

KRT = (M4-4(M1) (M3)+6 (M12) (M2)-3M1%) / var?  (3-4)

The following traensformations and block statistics

will also be used ec first-order statistics:
SDV = VAR
ACV = SDV / |AVE|
ASK = |SKWI|
AKR = |KRT-3.0|
MIN = min I(r,c)

r,c
MAX = max I(r,c)

r,c
RNG = MAX-MIN




MID = (MAX+MIN) / 2 (3-12)

C g

The most fundamental first-order statistic 1is the

averazge. Histogrem-equalization renders it useless on the
original image, but it 1is wuseful on feature planes
computed from the 1image. Computing the moving-window

average is equivalent to blurring or lowpass filtering the

feature pléene.

Variance and standard deviztion measure the
M irregularity in 2 feature plane,. These 2re importaent
features, and it is not known 2 ggiori which form is more

fundamenteal. Using both forms permits & linear znelysis

oﬁg»

to oapproximate nonlinear functions of the stendard
deviation. Absolute coefficient of variatiorn (ACV) is

also provided; for nonnecgative distributions it is ofter a

better dispersion measure then the stendard deviation.

Cther moments may also be useful. fkewness measures
the extent to which outliers favor one side of the main
distribution. Kurtosis measures peakedness or the
p° presence of outliers: the kurtosis of 2 uniform
distribution is 1.8, that of a2 Gaussian is 2.0. Absolute
skewness and the cbsolute deviation of kurtosis from the
Geussian value (sometimes known &s the "excess") =re elso

computed. Care has been taken to prevent computetionel

problems when the standerd deviation is near zero:

F skewness is set to zero and kurtosis to three. Large
{ ) values czre also prevented by clipping both measures at

plus and minus six.

SERATEINE The last four first-ordcr featuree ~re the miripur,
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meximum, range, 2and midrenge of the window. Al though

common descriptors of uniform distributions, these

statistics are included primarily because ‘of ‘their

computational simplicity.

Computstion of the twelve statistics et cvery rpicture
point cen be done in & single pass. Cn 2 PDP KL/1Q thisg
takes two minutes for & 512x512 imege, regardless of the
moving window size. The number of imagec rows kept in core
is equal to the number of rows in the window. Fech pixel
is exaemired only twice. 2 similer algorithm for computing

moving absolute everages is deccumented in Appendix PB.

} 3.6 The F-Ratio Feature Strength Measure
Throughout this dissertation, it will be necessary to
compare the discrimineting powers of different features.
We could compare clessification <accuracies for the

individual fectures, but an impracticel amount of

computing timc would be needed. A cimpler comrparicon

e S AP 11 MBS i T B0

statistic is the F-ratio. It is the retio of inter-cless

vaériance to intra-class variance.

A good feature will hzcve & cluster of values for
samples from one texture field, and 2 different cluster of
values for another texture field. Good features therefore
have high F-ratios. Actuel wvalues will not be importent
here, but ratios with the seme degrecs of freedom (i.e.

sampled populeton sizes) may be compared.

2o

F-ratios listed in this ond following chapters are
for 256 15x15 samples from cach of the eight textures.

The F-ratios hcve degrees of freedor 7 and 2040, meaking
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the probeability 1less than 0.001 that & feature with no
discriminating power will bhave & ratio above 3.47. In
practice we find that ratios below 100 are of 1little
value. All discriminent functions e&and classification
accuracies cited in this study will be based on varisables
with F-ratios of at least 40 efter adjusting for all otber

variecbles in the model. The probability of a varieble

having 2 ratio this large by chence is less than 10—50.
3.7 Image Block Statistics
Table 3-1 shows the effects of various

standardization procedures on first-order information.
The table lists the F-ratio for esch statistic, @ measure
of its discriminzting power for this set of textures. F-
ratios in the first column are for the original images,
before eny type of stendardization. Tt is apparent that
the texture fields are e3cily discriminated by their
means, variences, ranges -- in fact, by any of the first-

order statistics.

The last entry in the column shows that 211 twelve
features used together provide 85% classification
accurecy. It can be seen that even F-retios above 2000 do
not guarantee perfect clessification. 2 high ratio shows
that class means are sepereted zlong the feature
dimension, Tt does not mean thet all classes are
separated, however. Classificetion accuracy is & better

indication of multiclass separation.

The <secondé column 1is for adaptively standerdized

imeges. The pixele in each window wetre adjusted to have
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statistics are included primarily because ‘of their !

computational simplicity.

Computstion of the twelve statistics at cvery picture
point cen be done in & single pass. Cn 2 PDP KL/10 this

takes two minutes for &z 512x512 imege, regardless of the

moving window size. The number of image rows kept in core L

is equal to the number of rows in the window. Fezch pixel

is exemined only twice. A similar algorithm for computing

moving absolute averages is documented in Appendix B,

3.6 The F-Ratio Feature Strength Measure

Throughout this dissertation, it will be necessary to
compare the discrimineting powers of different features.
We could compare <clessificetion &ccuracies for the

individual features, but an impracticel arount of

computing timc would be needed. A simpler comparison
statistic is the F-ratio. 1t is the retio of inter-clzse

| vériance to intra-class variance.

A good feature will heve & cluster of values for
samples from one tcxture field, and 2 different cluster of
values for another texture field. Good features therefore

have high F-ratios. Actuel values will not be important

here, but ratios with the seme degrecs of freedom (i.e.

1 sampled populeton sizes) may be compared.

E F-ratios listed in this and following chapters are
for 256 15x15 samples from cach of the eight textures,

The F-ratios hcove degrees of freedom 7 and 2040, meking
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the probebility less than 0.001 that ¢ feature with no
discriminating power will have 2 ratio above 3.47. In
practice we find that ratios below 100 are of 1little
value, All discriminent functions &and classification
accuracies cited in this study will be based on variables
with F-ratios of at leest 40 ofter adjusting for all other

variekbles in the model. The probability of a variable

having 2 ratio this large by chence is less then 10_50.
3.7 Image Block Statistics
Table 3-1 shows the effects of various

standerdizetion procedures on first-order informetion.
The table lists the F-ratio for each statistic, a measure
of its discriminating power for this set of textures. F-
ratios in the first column are for the original images,
before eny type of stendardization. Tt is apparent that
the texture fields are e3gily discriminated by their
means, variences, ranges -- in fact, by &any of the first-

order statistics.

The least entry in the column shows that all twelve
features used together provide 85% classification
accurecy. It cen be seen that even F-ratios above 2000 do
not guarantee perfect clessification. A high ratio shows
that class means are sepercted clong the feature
dimension. Tt does not mean thet all classes eare
separated, however. Classificetion accuracy is & better

indication of multiclass separation.

The <csecond column is for edaptively standerdized

imeges. The pixels in e€ach window were oadjusted to have
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TABLE 3-1. TMACE STATISTIC F-RATTGS
Criginel

Feature Origingal Adaptive Globke] Adeptive g
IMGAVE 651 593 0 3 i
IMGVAR 1555 497 42 58

IMGSKW 625 585 6 9

IMGKRT 439 376 57 63

IMGSDV 1882 477 47 57

IMGACV 1593 554 5 54

IMGASK 502 461 40 30

IMGAKR 152 196 28 66

IMGMIN 1449 400 12 2

IMGMAX 386 619 59 10

IMGRNG 2004 473 68 7

IMGMID 575 637 34 7

Accuracy 84.81% 50.29% 19.82% 22.27%

mean 127.5 and stendard deviation 73.9, then were clippoed

to the range 0.6 - 255.0. The teble shows thet this

standardization reduces discriminability of the textures, |
although the power of some first-ordcr festures s
increased. Joint classification accuracy is reduced to
50%. This adaptive algorithm apperently does not work
well for grossly different first-order distributions. The g
clipping step emphesizes dJdifferences in skewness and
kurtosis; 1t &alsc translatecs them 1into Jdifferences in

mean, variance, 2nd other first~-crder feestures.

The third column shows results of histogream

eoualization on the originel images. The procedure has




little effect on perceived texturel, but reduvces first-

order discriminebility. Classification accuracy for the
set of 12 features drops to 20%. Equalization has removed
nearly all first-order differences among the images.
Texture information is evidently contained in second-order

statistics of the edqualized images.

The fourth column corresponds to histogram
egqualization followed by adeptive standardization. This
is & form of adaptive histogram equalization. The
discriminating power of several features incresses
slightly, apparently beczuse of the nonlinear clipping
effect. Joint classification accuracy remeins nearly the

seme, 22%.

The above statistics show that histogram eaualization
is a useful preprocessing technicue for removing first-
order 1image differences. Such processing may not be
needed in & calibrated texture recognition system, but is
essential for texture research with uncelibrated images.
All images wused 1in this study have been histogram
equalized. Texture measures heave also been computed for
the adaptively egualized csse since this additionel
standardization is likely to be needed when claésifyinq
small texture patches within natural scenes. Here the
adaptive standardization has been performed by brute force

scaling of the imege windows. It could also be

1All pictures in this document have been equalized. The
only perceptual changes are an increase in contrast and
possibly a change in oaverage brightness,
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accomplished by &lgebraic adjustment of computed texture

meesures.

Note thet the minimum classificetion accuracy under
this experimental ©paradigm 1is about 20%. Random
clessification of eight textures would produce 12.5%
accuracy, but clessification uvsing random features may do
better. This is because the test combinetion of features
is chosen 2 posteriori. These features must give at least
12.5% &ccuracy, 2nd will do significently better if
training 1images have exploitable differences. Even
identically distributed random fields can éppear
stotistically discriminable if the number of samples per
texture field is 1less than three times the number of
independent features. Thie study querds egainst false
significance by using 256 samples per texture &and a

minimum F-ratio of 40.

3.8 Comparative Measures

To judge the aquaslity of newly developed texture
meacsures, it is decirsble to aprly them to the same dete
used@ by other investigators. Unfortunately no common
database exists. We have implemented co-occurrence 2nd
correlation texture measures and 'heve applied them to tbe
Brodatz textures, eoch technique using the same 15x15
window size. Each algorithm hes been optimized to a
reasonsble extent, but there can be no guarantee thet o

faster or more powerful version could not be found.
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CHAPTER 4

CO-CCCURRENCE METHODS

This chapter investigates co-occurrence texture :
measures, seemingly the most effective and widely used of
existing texture analysis techniques. The relative

discriminating power of individual co-occurrence features

will be measured, which is itself an important
contribution. We will also determine joint classification
accuracy on our dataset using all of the co-occurrence
features; this will establish & lower bound for acceptable

performance of other approaches.

4.1 Co-occurrence Measures

Co-eccurrence matrices aere & popular source of
texture features. For this study we genercte each co-
occurrence matrix from a 15x15 source window reauantized
to 32 gray levels. FEach metrix is thus 32x32. WNine of
these matrices are used, corresponding to horizontal and
vertical spacings of zero, one, and seven pixels. The
chosen spacings correspond to horizontal, vertical, and
top-left to bottom-right diesgonal directions. The POO
matrix records first-order informetion: 2all the entries
are on the diagonal. The other eight matrices record !
second-order information. The matrices are not symmetric,
nor is there any averaging across different co-occurrence

angles.
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Meny ways have been proposed for extracting texture
information from co-occurrence matrices. The commonly
studied moments zre celled contrastz, inverse difference
moment, é&ngular second moment, entropy, and ccrrelation.

The formulas cre

coN = Y (r-c)? p(r,e) (4-1)
r,c

P(r,c)
IDM = ), ------5- (4-2)

r#c (r-c)
ASM = D p(r,c) (4-3)

r,c

ENT = - 2 P(r,c) log P(r,c) .(4-4)

r,c
(r—AVEr)(c-AVEc)P(r,c)

COR = Z ---------------------- (4-5)

where

AVE_ = ) (r)P(r,c)

r,cC
SDV, =‘/(Z (£-RVE ) 2p(r,c)
r,c

Rectilineer and diagonsl moments of the matrices will

be used &s texture measures, 8s well zs the 2@ hoc moments
of Equetions 4-1 through 4-5., The rectilinear (horizontal

and verticeal) moments of 2 matrix are

2Tamura et el. (9] found no correlation between

Haralick's CCN “moment and perceptual contrast. The
designetion hes becomc stendard, however.
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Mii = (1/n%) Y ! ed pirie) (4-6)
r,c
where P is the co-occurrence matrix and row and column

indices are computed relative to the matrix center.

Co-occurrence matrices have diagonal structure. Tt
makes sense to measure cnergy distribution relative to the
diagonals. Spatial moments in this orientation can be

measured by

pij = (1/n%) Y (x + ot (r - o) Pr,e)  (4-7)
r,c
Diagonal moments may 2lso be computed from the rectilinear

moments. For instance:

D22 = M40 - 2(M20) (M02) + MO4

Both rectilinear &nd diagonal moments will be tested
as texture features. Each spatial power will take values
from zero to two. Since the M00 and D00 moments are
identical, there are 17 moment features. The Harzlick,
rectilinear, and diagonal moments computed for each of
nine <co-occurrence matrices generate 172 1independent

features.

4.2 Co-occurrence Results

Table 4-1 1lists F-ratios for the common WHeralick
moments of Egquations 4-1 to 4-5. Only eéengular second
moment and entropy features are listed for the P00 matrix,
since the others are identiceally zero. It is interesting
that P70 features hzve much more discriminating power than
P07 features. Evidently this texture set differe more in

its verticel statistics than in its horizontal stetistics.
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TABLE 4-1. HARALICK STATISTIC F-RATIOS 1 A
Feature Global Adaptive Feature Global- Adeptive 4
POOASM 60 46 POOENT 102 6% I
PO1ASM 17 36 P10ASM 55 99 ]
PO1CON 168 275 P10CON 744 681
PO1COR 297 297 P10COR 644 632 :
PO1IDM 290 326 P10IDM 687 292
PO1ENT 71 71 P10ENT 278 239 |
P11ASM 15 17 P77ASM 45 43
P11CON 38 32 P77CON 12 5 1
P11COR 34 36 P77COR 6 6 !
) P11IDM 31 41 P77IDM 10 2
* P11ENT 62 44 P77ENT 68 62 1
PO7ASM 65 68 P70ASM 65 101 { q
i PO7CON 24 15 P70CON 241 304 P
f PO7COR 14 14 P70COR 267 264
PO71IDM 16 6 P70IDM 355 213 j
. PO7ENT 123 105 P70ENT 157 142 j
P17ASM 64 64 P71ASM 4] 43 1
P17CON 23 11 P71CON 82 80
P17COR 8 8 P71COR 57 58 ;
P171DM 16 4 P71IDM 64 25 4
P17ENT 117 97 P71ENT 82 65 )
F This may be due to verticel structure of the Leather,
Wood, and Water 1images. P77 moments are also weak,
probably because this trzining set has no diagonally
streaked textures. Note the power of POl &nd P10

features. Weszka et al. [40] zlso reported the dominence

of local co-occurrence features, and of Jocel features in

general. They found that lecrge-lzg co-occurrence features

work best if computed on blurred imeges, but we have not
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used blurred images in this study.




Table 4-2 shows classification accuracies available
with various feature sets. The first analysis uses only
the ad hoc Haralick moments. Together, the 32 features
perform better than the best combination of the last
chapter. The globally equalized textures have two
dominant discriminant functions wusing Pl1OCON, PO1IDM,
P70IDM, Pl1CON, PO1CON, Pl0IDM, PlOCOR:' and Pl11COR.
Discriminant functions for the @adaptively equalizgd
textures use P10CON, PO1IDM, P70CON, P1l1CON, PO1CON, and
P71COR. Angular second moment, correlation, and entropy

features apparently carry little texture informetion.

TABLE 4~2. CG-OCCURRENCE CLASSIFICATICN ACCURACY

Feature Set Global Adaptive
Harelick Moments 70.85 67.58
Rectilinear Moments 63.04 65.92
Diagonal Moments 56.60 63.04
Combined Moments 72.07 €8.16

The second and third éenalyses in Table 4-2 use the
rectilinear and diagonal moments, respectively. These are
the same moments computed on the autocorrelation matrices
of the previous section. Neither set 1is as powerful as
the Haralick moments. The first set of discriminant
functions are built primerily of M1l and M22 moments, the
second uses only D22, D02, and D20 moments. These facts

apparently reflect the diegonel symmetry of the co-
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TABLE 4-3.

CC-CCCURKRENCE MOMENT F-RATIOS

Feature Global Adaptive Fezture Global 'Adaptive
POOMO2 1 59 P00DO2 2 1
POOM11 1 59 POOD11 0 0
POOM20 1 59 P00D20 1 59
PO1MO2 1 45 P10MO2 1 50
PO1M11 30 281 P10M11 30 238
PO1M20 1 43 P10M20 1 49
PO1M22 8 202 P10M22 8 148
P11MO2 1 40 P77M02 1 6
P11M11 10 41 P77M11 13 8
P11M12 1 41 P77M12 1 3
P11M22 1 51 P77M22 1 14
PO7MO02 1 4t P70M02 1 14
PO7M11 25 281 P70M11 187 257
PO7M22 1 40 P70M22 19 a7
P17M11 24 8 P71M11 71 65
P01D02 168 275 P10D02 744 681
P0O1D12 34 40 P10D12 33 50
P01D20 8 195 P10D20 7 92
P01D22 151 287 P10D22 719 552
P11D20 3 47 P77D20 7 13
PO7D02 24 15 P70D02 241 304
P07D20 12 21 P70D20 73 187
P07D22 6 18 P70D22 185 138
P17D02 23 11 P71D02 82 80
P17D20 12 11 P71D20 29 48
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occurrence matrices. Note that D02 moments sre identical
to the Haralick CON moments. Table 4-3 shows the
discriminating power of individual rectilinear and
diagonal moments computed on the co-occurrence matrices.
Only those moments with ratios above 40 are listed. Tt is
possible, but rare, for features with lower individual
F-ratios to enter the discriminant model after the first

step.

The fourth nalysis uses all of the co-occurrence

w o

features together~. Classification accuracy is improved
slightly. The strongest of the globzlly edqualized
features, Pl1OCON, is leter dropped from the model. The
remaining features are P0O1IDM, P70IDM, P11CON, POI1CON,
P10COR, P10D22, and POICOR. The adaptively equelized
features arc Pl10CON, PO1IDM, P70CON, P11CON, POICON, and
P71M11. Both sets identify two dominant texture
dimensions. Scatter diagrems of sample points against the
first two principal exes 1loonk very similar to plots for
the different moment types individually. The patterns are
2lso similar to those found with Isplacian and Sob=2l
features, &although clusters are better separoted. The
first discriminant function separates the directional
textures, Wood and Water, from the rest. The second

function separates Raffia from Wool and Leather. Least

3Some features had to be omitted from the analysis

because of an SPSS limit of 100 variables. All features
with F-ratios above 40 and all features appearing in
previous discriminant functions were made available, as
well as the maximum eollowable number of less important
features.
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separated textures 2re Grass, Sand, and Pigskin.

4.3 Summary

Joint claessification accuracy for these measures is
68%, or 72% for globally equalized textures. This is fer
better than the 33% oachieved with the correlation and
Markov statistics of the last chapter, and somewhat better

than the 65% possible with Laplacian and Sobel statistics.

The features of greatest use are the Haralick CON,
IDM, and COR moments. The strength of these measures is
not surprising, considering their evolution over nearly a
decade. It is surprising that the full set of 172 co-
occurrence features has no more power than the 42 Haralick
moments., Evidently there is nothing to be g2ined by
studying new ways of extracting texture from co-occurrence

matrices.




CHAPTER 5
CORRELATION METHODS

This chapter presents 2 particular method of texture
measurement based on autocorrelation statistics. The
model will be developed only as fer as seems necessary to
determine the efficacy of <correlation stetistics es
texture measures. Classification accuracies achieved with
correlation methods will be cited in later chapters as
standards of comparison. The best individval features
will be carried forward into the texture models of Chapter

6.

5.1 Correlation Measures

It - was mentioned in Section 2.2 that the
autocorrelation function is not & sufficient texture
descriptor. Discriminable textures can be constructed
with identical first-order statistics and autocorrelation

functions.

Faugeras end Pratt [63]1 have devcloped 2 new class of
texture measures that go beyond autocorrelation
information. They 2a2pply e whitening filter to the texture
field, then measure the first-order statistics of the
decorrelated image field. These statisticel moments and
moments of the original autocorrelation function forin &
set of texture features. It is possible to mimic the

original texture by generating a random field with the

66




B -

- T TSR T T

e |

I3
i

i

T

(b) LPLSDV
(c) Sobel Magnitude :
Figure 5-1. Transformation Fxamples
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same moments and applying the inverse of the whitening
filter. The features extracted from several natural
textures have been compared using a Bhattacharyys measure;
results imply good classifying power with 2 very small

number of festures.

The full whitening operation is very expensive to
compute. Faugeras and Praztt suggest that the image be

convolved with the Markov process whitening mask (MKV):

RC ~C(1+R?) RC
1
——--z--=-=3- |-R(1+c?) (1+r%) (1+¢?) -R(1+c? (5-1)
(1-R%) (1-C%) )
RC ~C(1+R?) RC

where R and C are the horizontal znd vertical nearest-
neighbor correlation coefficients. This operator will
completely decorrelate a Markov field for 51! lags greater
than one. Nearest-neighbor coefficients &are sczled by
-0.5 and diagonal-neighbor <correlations are scaled by

0.25.

The R and C coefficients for 15x15 blocks of the
Brodatz textures raeange from 0.30 to 0.95, with the average
near 0.70. As the correlation coefficients approach
unity, the numerator of the whitening operator approaches

a Laplacian operator:

1 -2 1
LPL = | -2 4 -2 (5-2)
1 -2 1

the

Figure 5-la is the convolution of this mask with
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composite texture image of Figure 1-4b. Figure 5-1b is
the result of computing the stendard deviation in a 15x15
window around each pixel in the Laplacian image. This and
other feature planes will be evaluated in the next

section.

Another 3x3 operation suggested by Faugeras and Pratt
is the Sobel gradient magnitude. It is considered an edge
detector rather than a wh{tening operator, but empiricel
evidence supports its use in texture discrimination. The
Sobel gradient is & 3x3 nonlinear operator weighted toward
the window center but omitting the actuel center pixel.

The Sobel masks are

-1 0 1 -1 -2 -1
x = | -2 0 2 y =0 0 0
-1 0 1 1 2 1

For each image position the Sobel magnitude is computed as

the root-mean-mean-sguare of the two weighted pixel sums:
sBL = Vx4 y2 (5-3)

This measure has been shown [71) to locate gray level step

edges about as well as any other popular edge detector.

Figure 5-1c shows the Sobel gradient magnitude for
the composite imeage. This operator emphasizes edge
structures in the texture fields. The 15x15 standard
deviation, shown in Figure 5-1d, is obviously less useful

than the Laplacian standard deviation.
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5.2 Correlation Results

The texture feature set we shell use consists of
moments of the autocorrclation function plus first-order
statistics of the Markov whitened image. Leplacian and
Sobel gredient megnitude operators will also be tried in
place of the Merkov decorreleztion operator. Texture
features bkased on these 13Ix3 operators should be less

powerful then the adaptive Markov features.

We  shell extract texture information from the
correlation matrices by computing spetial moments. The
rectilinesr &end diegonzl moments arc of the same form es
in Eguations 4-6 =znd 4-7,. fince the MO0 and D00 momentes
are iJdentical, there are 17 correlastion features. The
twelve first-order ststistics will &lso be computed for
each texturce block "whitened" with the Markov, Leplacien,
or Sobel operators, for & totel of 52 independent features

per texture block.

Table 5-1 shows the discriminating power of
individual features. It cen be seen that moments of the
correlation function are very wecak texture measures. The
Leplacian operator generates some very powerful texture
measures., Statistics of Markov whitened fields have much
less discriminating power, althouah kurtosies and absolute

kurtosis features are mocderately good.

Table 5-2 shows <classificetion accuracies achieved
with various subsets of these texture fectures. The first
three rows correspond to features extracted from

autocorrelation metrices of the 15%x15 windows. Fach
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TABLE 5-1.

CCRRELATION STATISTIC F-RATIOS

Feature Global Adaptive Feature Global Adaptive
CORMOQO 15 15 CORD0O 15 15
CORMO1 15 17 CORDO1 10 11
CORMO02 22 21 CORD(2 . 6 6
CORM10 16 14 CORD10 18 17
CORM11 23 23 CORDP11 47 46
CORM12 7 10 CORD12 7 5
CORM20 14 14 CORD20 24 24
CORM21 9 -9 CORD21 5 4
CORM22 17 17 CORD22 15 15
MKVAVE 65 74 LPLAVE 1 ]
MKVVAR 24 31 LPLVAR 707 609
MKVSKW 23 17 LPLSKW 22 16
MKVKRT 240 242 LPLKRT 251 250
MKVSDV 51 70 LPLSDV 851 700
MKVACV 1 1 LPLACV 1 1
MKVASK 29 29 LPLASK 48 46
MKVAKR 248 253 LPLAKR 261 263
MRVMIN 44 60 LPLMIN 429 374
MKVMAX 386 53 LPLMAX 512 444
MKVRNG 42 58 LPLRNG 571 488
MKVMID 6 7 LPLMID 13 11
SBLAVE 84 64 IMGAVE 0 3
SBLVAR 53 156 ITMGVAR 42 58
SBLSKW 79 77 IMGSKW 6 9
SBLKRT 54 49 IMGKRT 57 63
SBLSDV 55 159 IMGSDV 47 57
SBLACV 112 108 IMGACV 5 54
SBLASK 79 77 IMGASK 40 30
SBLAKR 20 34 IMGAKR 28 66
SBLMIN 14 9 IMGMIN 12 2
SBLMAX 50 29 IMGMAX 59 10
SBLRNG 48 33 IMGRNG 68 7
SBLMID 50 25 IMGMID 34 7
71
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correlation matrix is computed for horizontzl and vertice)
lags ranging from minus seven to plus seven. Tt is thue 2
15x15 matrix, elthough symmetry reduces the number of
independent elements to 113, Correlation coeffiéients for
larger 1lags would be based on too few pixel peairs for

reliability.

TABLE 5-2. CCRRELATION CLASSIFICRTICN ACCURACY

Feature Set Globezl Adagtive
COR (Rectilinear) - -
COR (Diagonal) 19.63 19.92
COR 19.63 19,92
COR+MKV 31.71 23,11
COR+LPL 54 .83 47 .80
COR+SBL 22.47 38.67
COR+MKV+LPL+SBL+IMG 63.62 65.23
MRKV+LPL+SBL+IMG 63.62 65.22

The first row of Table 5-2 is based on rectilinear
moments of the correlation matrix, as described in
Equation 4-6. Discriminant functions could not be
computed because none of these feztures have an F-ratio
above 40. The second row uses diagonzl moments as given
in Equation 4-7. These are 1little better than the
rectilinear moments, although CORD11l has sufficient power
to generate a classification function. The third analysis

combines both sets of moments; again only CORD1ll is
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useable. It is <clear that moments of smell-window

correlation functions have little discriminating power on
this texture set. They might perform better on
directional textures or textures differing strongly in

coarseness.

The next analysis combines autocorrelation features
with first-order statistics of the whitened block. The
plus sign represents the union of texture feature sets
rather than addition. Each block was whitened with the
Markov decorrelation operator of Fquation 5-1. The
operator is adaptive since it uses the nearest-neighbor
correlation coefficients of ezch window in decorrelating
that window. Two discriminant functions were found, with
joint <classificaticn accuracy of almost 22%. The
principael component is essentially MRVAKR. No

autocorrelstion feature is strong enough to contribute.

The next two analyses use nonadaptive 13x3 operations
in place of the whitening filter. The Leplacian of
Equation 5-2 works very well, identifying three texture
dimensions related to LPLSDV, either LPLKRT or LPLAKR, and
LPLVAR. The strong discriminating power of these features
contradicts the theoretical basis of this section, which

predicts superiority of the MKV features.

Faugeras and Pratt [63]) proposed the Sobel gradient
magnitude, an edge detector, a3s an ad hoc replacement for
the decorrelation operation. As a texture detector, it
works little better than the Markov whitening filter. For

the globally egqualized texture set, it identifies three
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texture dimensions related to SBLACV, SBLAVE, and SBLRNG.
For the adaptively equalized set it identifies four

dimensions based on SBLSDV, SBLASK, SBLVAR, and CORD11.

The final two 2analyses made all of the preceding
features available, with and without the correlation
moments. The IMG features of the last section are also
k included: by themselves they have 1little discriminating
power, but they could be important in combination with
other feetures. Results of both &snalyses are identical
since the correlation moments are not strong enough to
enter into the model. The globally equalized textures
produce six discriminant functions using LPLSDV, LPLAKR,
LPLVAR, SBLAVE, and SBLVAR. The =2daptively equalized
textures generaté seven functions using LPLSDV, LPLAKR,

LPLVAR, SBLSDV, IMGAKR, MKVSDV, SBLSKW, and SBLVAR. In

,.
St i,

each case, the first three texture dimensions are much

stronger than the rest. They are based 2lmost entirely on

standard deviations and variances of Laplacian and Sobel
features. Scatter diegrams, pairwise F-ratio tables, and
clessification (or confusion) matrices show that texture
dimensions computed for the two cases are similar. The

least separated textures are Sand, Pigskin, and Leather.

The chief texture dimensions seem to be Wool versus Raffia

: and Wood, and Water versus Raffia and Wool.

L : 5.3 Summary !

It is clear that the local autocorrelation function
does not discriminate these eight textures, although it
may messure texture dimensions not represented in this

treining set. This casts doubt upon the cutocorrelation
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texture wmodel, and on the correlation-based linear

predictive methods of texture segmentation

[181. The

success of Laplacian and €Sobel texture trensforms will be

explored further in Chapter 6.
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CHBAPTER 6
SPATIAL-STATISTICAL METHODS

Structural texture measures share & common weskness:
discrete texture elements must be located, classified, and
studied before texture itself can be measured. This is a
severe computationel problem even for simple artificial
textures, &and 1is nearly impossible for noisy, blurred,
undulating, or stochastic textures, It would be
difficult, for instance, to identify a ressonable texture
primitive for the Pigskin imege. Further, struc%ural
methods inherently clsssify a texture field es a whole, or
at best classify discrete texture elements. They ére
unsuiced to the tesk of segmenting en image by classifying

each pixel.

We now introduce & more suitable cless of texture
features, called "spetizl-statistical." The neme is new,
but many of the technigues &are well known, Indeed, they
would be claimed by researchers in both the statistical

and structural camps.

The basic approach is to compute statistics of
various local image functions. These measures are spatial
beccuse they depend upon locel window functions rather
then single pixels. They are statistical in the sence
that statisticzl moments of an imzge window :re invariant

to relztive pixel positions: pixels of the intermediate
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functions could be shuffled without changing the composite

texture measure.

To recapitulate: we compute functions of an imege,
€.g. by convolving with 3x3 masks, then compute the mean
and other statistice in a window around each pixel. The
number of texture features measured at each point is the

number of image functions times the number of statistics.

Two window sizes are. actually used. The "micro"
window, used to compute spatial functions, is typicelly

3x3 or 5x5 pixels. The "macro" window for computing

statistical moments is typicelly 15x15 pixels, possibly
31x31 or larger. 04dd window sizes are convenient because

they have well-defined center pixels.

The simplest micro-feature is the pixel value itself.

One may regard this as the averege luminance over a 1x1

region of the original image source. ITn calibrated

imagery the pixel value has quantitative meaning, but

pixels in typical images have only a relative meaning.

. This can invalidate some macro-statistics. OCne "cure" for
this is to standardize each input image to s perticulear

mean and contrast. The images used in this study have all

been requantized to have uniform first-order statistics.

Two popular measures of texture coerseness are edge

per unit area [32] cnd extrema per unit area [721. Each
is found by convolving a spatial operator with the image.
The resulting feature plane mey or may not be subjected to
thresholding (hard limiting), thinniry, or adaptive

PARNE binarization. Then the response eround each point is
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integrated and assigned to that point as 5 texture
measure. This last operation is edquivalent to blurring of

the feature plane.

A measure similar to a local standard deviation has
been used by Hsu [73]. He computed the average deviation
of neighborhood pixels from the neighborhood average and
also from the intensity of the central pixel. These
operations will locate image edges, but will also locate

areas of high noise or high-frequency texture variations.

Recent evidence indicates that spot information is
the only data transmitted to the brasin by the optic nerve.
The visual cortex then locates edge and line features from
the spot response plane [74]. These edge features seem to
be the principsl determinants of perception ({511, (141,
It is possible that & single type of primitive Iis
sufficient to explain the myriad varieties of perceived
texture, but it seems more sensible to use a lérger set of
texture primitives. Cne set, borrowed from terrain
description, consists of peaks, pits, ravines, hillsides,
passes and saddles [75], [76]. Measures similar to these

will be investigated in this chapter.

Edge per unit area is generally considered &
structural-statistical texture measure. Indeed it is, if
the feature is computed by finding and counting discrete
edge elements. The spatial-cstatistical paradigm includes
this approsch, but permits another: to compute the average
(and other statistics) of an "edgeness" measure computed

at each pixel. This saves having to determine a suitable
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threshold level. It is not known which method is more
power ful. Throughout this study the term spatial-

statistical will refer to the second approach.

In a sense, the micro-windows themselves are used as
primitive elements, but we shall reserve the terms texture
primitive and texture element for structures inherent to
the source texture,. Properties related to these
primitives, such as edge per unit area, can be measured
without 1identifying the primitives themselves, The
methods are thus purely statistical despite any

theoretical dependence on structural elements.

Spatial-statisticel methods are particularly
appropriate for noisy or Dblurred 1imagery where texture
elements cannot be identified with certainty. Very little
work has been done on the identification of structureal
textures in the presence of noise, but effects of noise
and blur on spatial-statistical features ore relatively
easy to model. A particulerly tractable set of micro-
fectures, cspatial moments, will be discussed later in this

chapter.

6.1 window Size

This research uses micro-texture and macro-texture
measures. Micro-texture measures are computed within very
small overlapping windows. The windows are typically 3x3
or 5x5, small enough to make it unlikely that more than a
single texture region exists within the window. Macro-
texture measures are lerge-window summaries of the micro-

features. Macro-windows must be large enough to include a
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representative sample of the imege texture. 2 method for
dealing with windows overlaping meore then one texture

region has been suggested by Laws [77].

There is no theoretical reagson for 1limiting the
micro-window to 5x5; it could even be larger than the
macro-window. The micro~-window 1is typically small

because:

- Micro-features are oft%n vepy expensive to
compute, teking time O(n“log n“) or greater for
a window of size nxn. The macro-statistics we
propose are less costly and can be applied to

: larger windows. They cen be computed in
y constant time regardless of the macro-window
size.

e
|

Micro-texture features are designed to measure
local texture ©properties, while the macro-
. statistics measure properties of the texture
field as a whole. The contrast between their
sizes 1is essential for cherecterizing &ll1 but
the simplest textures.

- There is no guarantee that &ny perticuler
resolution or window size will bt~ optimal for &
given anelysis. Still, there js a tendency for
humans to request aneslyses reoulring the finest
resolution available from an image, &end to
obtair imagery with resolution just sufficient
for the desirec¢ onelysis. We may thus assume
that wvery smell windows cen produce texture
features as powerful as the highest resolution
features used by the human retina.

- Small window features work very well. FRosenfeld
and his co-workers [32], [781 echieved good
results computing edge per unit aree with the
2x2 Roberts gradient. This study will further
support the power of such local operators. \
It could be argquec that micro-textures should be
| computed over several window sizes. This is not 2 greet

computational proklem, but multiple window sizes quickly
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create & large number of features. Five micro-features at
five resolutions described by five macro-statistics would
be 125 features to be computed, stored, and anslyzed for

each of perhaps 250,000 image pixels.

Further resesrch may prove that many window sizes
must be used simultaneously for proper texture
identificetion. This spproach has been used [791, [91 in
edge detection and measurement of texture coarseness. It
seems plausible, however, that a macro-scele
characterization of micro-features 1is sufficient for
preliminary texture clzsecification, with syntectic,
semantic, and special-purpose detectors invoked for

detailed enalysis of interesting regions.

The cize of the optimal meacro-window cleerly depends
on texture coarseness or regularity, as well e&s the
guality of the evaileble micro-features. Tt is to be
hoped thst one size will be found e&deouate within any
given application. Multiple or adaptive window sizes

could be implemented only at much greater expensc.

6.2 Window Shape

When using Fourier descriptors, it is common practice
to multiply window elements by & shaping function. This
gives the most weight to center elements, progressively
less to pixels near window edges. fuch weigbting
functions have also founéd 1implicit wuse 1in the more
sophistica;ed edge detection operations, e in the PFueckel
operator [801, and even in simple operetors such as the

Sobel gradient function. The techniaue deserves




examination.

Weighted windows are used with transform methods
because digital transforms are inherently cyclic. Each
image block "wraps around" so that its left and right
sides are adjacent, as are its top and bottom. One way of
visualizing this is to imagine that the image block is
surrounded by replicas of itself. Weighting functions
which fall off toward the block edges reduce the sharp

transitions, or aperture effects, that may occur there.

The other reszson for using weighted windows is to
reduce the effect of boundary overlap. A window covering
more than one texture region will produce hybrid or even
unpredictable texture measures. Window shaping reduces

the effect of contrasting regions near the window edges.

For non-~transform applications, the best weighting
function depends on the average region size and shape
relative to the window size. Exact criteria are in the
realm of estimation theory. If it is known that the
window covers & single texture, there is no reason to
reduce the weight .of any data. The most accurate
classification will be possible if the largest computable
window 1is used. Window shaping reduces the effective
window size and hence the classification accuracy. It
also adds to the computational burden, particularly since
moving-window update techniqgues cannot be used. This

study will not use weighted windows.
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6.3 Statistical Moments

The first-order statistics of Section 2.5 may also be
used as micro-features. We can, for instence, compute the
standard deviations within moving 3x3 windows and then
compute macro-window statistics within this feature plane.
Resulting texture measures would be called SDVAVE, SDVSDV,
etc. The name of a texture measure is composed of the

micro-statistic name followed by the macro-statistic name.

This section compares the local statistical features
with the IMG, Laplacian, and Sobel features discussed in
Sections 3.7 and 5.2. The AVE, SDV, SKW, and KRT micro-
features are simply small, continuously shifted versions
of the corresponding macro~features. They are computed
for each 3x3 or 5x5 window in the image, with the computed
value assigned to the center pixel. Macro-features are

then computed for 15x15 windows in the feature planes,

Individual features with F-ratios above 100 are
listed in Table 6-1. The micro-window AVE features have
little power. SDV, SKW, and KRT do better, 2bout &s well
as SBL micro-features. None of these methods approaches
the Leplacian in power, although jointly the 2x3
statistical features have about the same power zs the IMG,
LPL, and SBL sets together. The 5x5 measures perform less
well, presumably because they contrast less with the 15x15

macro-statistics.

Joint classification accuracies are listed in Table
6~-2. The largest feature set, using Laplacien, Sobel, and

3x3 statistical features together, performs far better
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TABLE 6-~1. LOCAL STATISTIC F-RATIOS

3x3 5x5 3x3 5x5
Feature Global Globel Adaptive Adaptive
LPLVAR 707 - 609 -
LPLKRT 251 - 250 -
LPLSDV 851 - 700 -
LPLAKR 261 - 263 -
LPLMIN 429 - 374 -
LPLMAX 512 - 444 -
LPLRNG 571 - 488 -
SBLVAR 53 - 156 -
SBLACV 112 - 105 -
SDVVAR 50 73 166 193
SDVSKW 97 37 105 34
SDVSDV 52 74 166 195
SDVACV 158 134 179 . 136
SKWVAR 207 81 125 7
SKWSDV 245 99 164 94
SKWMAX 134 56 25 68
SKWRNG 244 151 43 130
KRTAVE 497 117 474 130
KRTVAR 181 54 178 5%
KRTSKW 118 35 134 39
KRTSDV 234 67 228 69
KRTACV 150 57 144 52
KRTASK 118 35 134 39
KRTMIN 6 100 16 80
KRTMAX 184 83 157 90
KRTRNG 117 75 92 78
KRTMID 130 92 84 102
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than any previous texture measures. Neither type of

measure alone approaches this accuracy of 84%.

TABLE 6-2. LOCAL STATISTIC CLASSIFICATION ACCURACY

Micro- 3x3 Sx5 3x3 5x5
Feature Set Globsl Global Adaptive Adeptive
LPL 54.83 X - 47,80 -
SBL 32.47 - 35.84 -
IMG+LPL+SBL 63.62 - 64.16 -
AVE 19.82 19.73 19.43 21.88
SDv 39.94 29.54 28.66 34.62
SKwW 31.59 23.68 29.20 21.92
KRT 39.50 33.89 37.26 33.45
AVE+SDV+SKW+KRT 59.81 48. 44 61.62 46 .88
IMG+LPL+SBL+AVE

+SDV+SKW+KRT 84.57 65.63 82.52 67.82

It is apparent from the scatter diagrams (not shown)
that the two combined 3x3 feature sets, IMG+LPL+SBL and
AVE+SDV+SKW+KRT, are measuring slightly different texture
dimensions. This 1is confirmed by the much greater
classification accuracy when both sets are combined.
Principal components of the globally egualized textures
are based on LPLSDV, KRTAVE, LPLAKR, (SBLACV), LPLVAR,
SDVAVE, SBLAVE, SDVSDV, (IMGASK), IMGMAX, SKWAVE, IMGAVE,
AVEACV, SKWVAR, and SBLVAR. Terms in parentheses were
dropped from the model as other terms were found to be
jointly more powerful. The adaptively eoualized textures

generate principel <components using LPLSDV, KRTAVE,
85
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LPLAKR, SBLAVE, SDVAVE, LPLVAR, SDVSDV, (IMGRNG), SBLSDV,
SKWAVE, IMGMAX, and IMGVAR.

Surprisingly, the joint classification accuracy is
lower when the 5x5 statistical moments 2re combined with
the 3x3 Laplacian and Sobel. Principal components for
both texture sets require LPLSDV, LPLAKR, and LPLVAR. The
globally egualized set adds KRTAVE, SBLACV, and SKWRNG;
the adaptive set reguires SKWSDV, SBLACV, SDVAVE, and
IMGRNG. The 5x5 statistical moments 2dd zlmost nothing to

the information in the 3x3 Laplacian snd Sobel.

It is difficult to draw conclusions from the dezte
presented here. A set of simple 3x23 texture measures
evaluated over 15x15 blocks has been found to have
extraordinary discriminsating power. The first two texture
dimensions are slightly rotated versions of those found
with co-occurrence methods. The least separated textures
are still Grass, Sand, and Pigskin. The first principel
component separates Wood from Wool, the second separates
Raffia from the other seven textures. The number of
terms, however, makes it difficult to say ijust what is
being measured. We shall continue our search for a set of

fast, effective texture measures.

6.4 Spatial Moment Masks

Since texture 1is & locally spatial phenomenon, we
must use local spatial operators to generate our feature
planes. Computation of spetial moments is equivalent to
multiplying an image window by 2 mask and then summing.

This is exactly what is done in convolution. It seems
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reasonable to convolve sma2ll spatial moment masks with an

imeage to produce a set of feature planes.

11 1 -1 0 1 1
1 1 1 -1 0 1 1
11 1 -1 0 1 )
MO0 MO1
-1 -1 1 0 -1 -1
0 6 0 6 0 0 0
11 1 -1 0 1 1
M10 M11
1 11 -1 0 1
c 0 v 0o 0 0 0
11 ) -1 0 1 )
%20 M21 {\
»

Figure 6-1. 3x3 Spatial Moment Masks

The spetial moments of 2 local window are

Mij = (l/nz) 2: r' ¢ 1(r,0)
r,c

0 1
0 1
0
M02
0 -1
0 o0
0
M12
0 1
)
0 1
M22
(6=1) R

It is assumed thot row and column indices are reletive to
the window center, éand thet the computed moments are
zssigned to thisz centesr point as & feature vector. The
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3x3 and 5x5 spatial moment masks are shown in Figures 6-1

and 6-2.

When spatial moments are computed over a probability
density, such as a co-occurrence matrix, it is often
desirable to relate higher moments to the center of the

probability mass, (M10/MO0,M01/M00). For instance,

(r - M10/M00)% I(r,c)
r,c

M20' = (1/n%)
or
M20' = M20 - M10°% /MO0

The same normalization is often wused in <character
recognition systems to achieve shift invariance. For
small texture windows, however, such standardization makes
little difference. 1t is not worth the extra computation,

and may not even be appropriate.

Table 6-3 lists locel moment features with F-ratios
above 150. M10SDV, M11SDV, anc M12SDV festures éere seen
to be extremely powerful. Several RNG features are also
outstanding, but will  be found 1less importent in
conjunction with the other texture measures. M00, MO2,
M20, and M22 features are seen to have very little power.
Note that the M00 moment is identical to the AVE micro-

feature.
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TABLE 6-3. LOCRL MOMENT E-RATIOS
3x3 5x5 3x3 5x5
Feature Global Globel 2daptive Adaptive
MO1VAR 258 177 587 427
MO1SKW 221 52 229 54
MO1KRT 183 21 249 38
MO1SDV 274 183 618 424
MO1ASK 198 24 208 26
MO1MAX 153 122 248 203
MO1RNG 136 148 249 292
M1OVAR 797 601 909 797
* M10SDV 1490 1038 1486 1195
? M10OMIN 944 698 956 725
. M10MAX 765 594 722 579
. M10RNG 1388 1062 1407 1144
4
r M11VAR 6§37 609 713 603
M11KRT 185 6l 196 69
M11SDV 1245 8§92 977 804 ;
M11AKR 183 22 194 25
1 ‘ M11MIN 543 491 434 408 |
: M11MAX 506 429 418 263 4
M11RNG 773 678 628 581
M12VAR 769 584 865 746
M12SDV 1428 1003 1396 1120
M12MIN 883 633 885 634
M12MAX 704 541 644 506
M12RNG 1270 952 1259 982
* M21VAR 266 177 621 431
M21SKW 206 49 212 51
M21KRT 167 27 229 47
M21SDV 284 182 . 652 429
M21ASK 180 24 188 25
M21MAX 154 103 249 178
M21RNG 141 119 263 244
i
, TABLE 6-4. MOMENT CLASSIFICATION ACCURACY
\ Feature Set ngggl AQEEEEXE Adgggive

Mij

65.67 77.00

67.72




Table 6-4 shows classification accuracies on each of

the texture Eets. The first analysis, with 81¢%

classification accuracy, uses M10SDV, M]11SDV, MI10VAR,
M12vAR, MO01SDV, M21SDV, MO1SKW, and M11KRT. Scatter
diagrems for the first two texture dimensions are visually
different from those of previous texture sets, but the
pattern of group centroids is much the same. The first
dimension separates Wood and Water from the rest; the
second separates Raffis from Wool and Leather. The 32x2
adaptive case gives very similar results with M10SDV,
M11SDpv, M12SDv, MI10VAR, M01SDV, M21SDvV, MO1SKW, and
M11KRT. The dominance of SDV and VAR mecro-statistics is
obvious. micro-window moments contzining oAd powers are

also dominant; they are the ones with zero-sum masks.

Model features for 5x5 moments are similar to those
for 3x3 moments. 2 large decrease 1in classificetion
accuracy. occurs with the 1larger micro-features. This
trend has been noted before. 1t may be an artifect of the
texture set, or an interection of micro-window and macro-
window sizes. It mey also indicate that the perimeter-
weighted moments are not as appropriste as center-weighted
statistics such &s the Laplacian. The larger micro-window

brings out the perimeter weighting of the spatizl moments.

6.5 Rotation-Invariant Moments

Most investigators have chosen texture mezsures thet
are invariant to rotation of the texture field. This is
partly because perceived texture, particularly perceived
coarseness, ic little changed by rotation. The assumption

of rotational isotropy hes also been used to reduced the
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number of measured texture features and to increase
statistical reliability of texture features by averaging

measurements in different directions.

There is & need for directional texture features.
Humans are able to distinguish horizontsl line textures
from verticel ones, &and 1left gredients from right
gradients. One applicsation of directional texture
measures 1is the segmentation and interpretastion of rock
streta 1in seismic imagesi ' There 1is &also a need for
nondirectional texture meésures, such as the Laplacian.
This section describes two methods of generating
nondirectional features from the directional spatial

moments of the previous section.

Assume that the image texture has & dominant
direction, such &s & global gradient or 2 mejor Fourier
component. Let the camera or texture field be rotated
through &an angle A, and let a = cos(A), b = sin(a). The

new moments cen be computed from the original window as

Mij(A) = (1/n?) Y. (ar + be)? (ac - br)? 1(r,c)
r’C
Haralick computes several features of this form to measure

energy along co-occurrence matrix diagonals. Using the
binomial expsnsion it can be seen thzt these moments are

linear c¢ombinations of the Mij. For instance,
M11(A) = -abM20 + (a2 - b?)M11 + abM02
A better method of normalization has been developed

by Hu ({81]. He derives the following orthogonral set of

rotation-inveriant moments:

RI1 = M20+M02 92
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RI2 = (M20-M02)2+4M112
RI3 = (M30-3M12)2+(3M21-M03) 2
RI4 = (M30+M12)2+(M21+M03) 2
RIS = (M30-3M12) (M30+M12) [ (M30+M12) 2-3 (M21+M03) %)
+(3M21-M03) (M21+M03) [ 3 (M30+M12) 2 (M21+M03) ?)
RIG = (M20-M02) [ (M30+M12) - (M21+M03) 2]
+4M11 (M30+M12) (M21+M03)
RI7 = (3M21-M03) (M30+M12) [ (M30+M12) 2-3 (M21+M03) 2]

- (M30-3M12) (M21+M03) [3 (M30+M12) 2— (M21+M03) 2]

Maitra ([82] suggests a3 set of ratios of these
functions which are invariant to contrast and scale
changes oas well &s rotation. We will call them "full
invariants," although they are not invarient to changes in
luminance 1level. In theory, they are also invariant to
scale changes, but this may not hold when the sampling
rate and window size remain constant. The moments,

modified to avoid negative roots, are:
FIl = VIRIZI / RI1
FI2 = (RI3 * M00) / (RI2 * RIl)

FI3 = RI4 / RI3

FI4 = VIRISI / RI3

FI5 = RI6 / (RI4 * RI1)

FI6 = RI7 / RIS

Both sets of inveriant moments present computetional

difficulties. Rotation-invariants RIS &end RI7 tend to
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"blow up" beceuse of the bhigh powers involved. We have
corrected for this by sceling the Mij terms by 1/255, in
effect sceling the input dets to the renge zero to one, ]
Full-invariants give trouble becazuse the denominators can
]

approach zero. We have sct the auotient to zero if the

magnitude of the denominator is less then 0.001.

Note that these inverient moments, like the sgpatiel
moments of the last section, are used only 2as nmricro-
fcaturcs. They are computed on 3x3 or 5x5 windows, not on
the larger macro-windows. Application of the twelve
mécro-statistics generates 84 rotction-inverient texture

features and 72 full-inveriant features.,

The inverients éore nonlirear trensformation« of the
moment feature planes. They cre rotetion irverient in the
same sense ag the statisticzl meoments of the lzet section:

the output of cach micre-window is theoretically

unaffected by rotestion of the texture field eround the

center of that micro-window. In practice, this ig only

i

approximately true beczuse of discretizaticn and cperture

ceffects. GClobal effectes of rotation are removed by the

i

macro-statistic computetion, which 1is irvariznt to the

rotation or translation of the micro-windows.

Tables 6-5 and 6-6 show the individuel powers of the
rotetion-invariant moments  &nd full-inveriant moment
ratios. The tables show thet RI2, RI5, FI3, and FI4
micro-features are the most useful for texture

description.

Table 6-7 shows that discrimineting power always
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TABLE 6-5.

ROTATTION-INVARTANT MOMENT F-RATIOS

Feature

RI2VAR
RI 2KRT
RI2SDV
RI2AKR
RI2MIN
RI2MAX
RI2RNG

RI3VAR
RI3SDV
RI3ACV

RI4AVE
RI4VAR
RI4SDV
RI4ACV

RISAVE
RISVAR
RISSDV
RISACV
RISMAX
RISMID

RI6GMAX
RIG6RNG

RI7SDV

3x3
Global

837
187
1244
185
547
502
773

42
36
140

62
66
65
120

193
69
74

118

376
85

114
128

82

5x5

Global

603

59
875

21
501
412
673

33
29
147

64
62
63
149

153
60
70

278

101

103

86

3x3
AdaEtive

713
198
976
197
437
413
627

134
124
135

°1
200
204
120

481
172
199
122
283
144

80
99

41

5x5

adaptive

596

66
789

23
419
344
575

70
65
138

132
208
225
157

3é8
145
2013

2
244
172

75
94

107
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TABLE 6-6. FULL-INVRRIANT MOMEFNT F-RATICS
3x3 5x5 3x3 5x5
Feature Global Global Adaptive Adaptive ]
FI1AVE 53 63 379 772
FI2SDV 69 24 114 23 .
FI3AVE 247 46 177 42 )
FI3VAR 234 9 250 11 |
. FI3SKW 197 12 147 8 f
. FI3KRT 159 0 89 1
. FI3SDV 386 29 381 27
FI3ACvV 319 36 378 32
H FI3ASK 180 12 137 8 ;
T FI3AKR 149 0 86 1 P4
FI3MAX 159 21 153 19
s FI3RNG 159 21 153 19
FI3MID 159 21 153 19
FI4VAR 245 18 264
FI4SKW 258 19 220
FI4KRT 272 6 176
FI4SDV 314 41 321
FI4ACV 202 56 306
FI4ASK 187 1¢ 168
FI5AKR 184 6 140
FI4MAX 147 24 133
FI4RNG 147 24 133
. FI4MID 147 24 133
FISVAR 173 65 ) 196
FI5SDV 227 81 240
FISMIN 175 88 99
FIS5MAX 186 102 111
FI5RNG 265 124 140
FI6SDV 151 8 106

FIG6RNG 106 8 67
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decreases as more invariance is added. The 3x3 rotation-

PHPO

invariant features still perform very well, better than

co-cccurrence measures. Adaptive ecualization has little

Eidhia o

effect on the classification accuracies; surprisingly, it

full-
RI2SDV,
RI6ACV, and

effect on rotation-inveriants than on
Globally

RI4AVE, RI3AVE,

has 1less
textures use

RISAVE,

invariants.
RI2VAR,
RIGAVE.

egqualized

RI2AKR,
AVE macro-features are apparently of use because
of the nonlinear product terms involved in computing these
adaptively :
RI3SDV,
RI2KRT, RI2VAR, RI4AVE, RI6SDV, RI6AVE, and RI1VAR. ]

moments. Discriminant functions for the

equalized textures use RI2SDV, RIS5AVE, RI4SDV,

TABLE 6~7. INVARIANT CLASSIFICATICON ACCURACY
3x3 5x5 3x3 5x5
Feature Set Global Global Rdaptive Adaptive
RI 74.17 54.25 74.17 57.37
FI 53.27 30.47 56.69 37.26

Full-invariants are nearly invarieant to texture eés

well as to rotation and contrast. It must be concluded

that contrast invariance is better achieved by global or

macro-window egualization than by micro-window

equalization. Rotation invariance, when recuired by &

particular application, can be obtained at 1little cost

with the RI fesatures or the local statistical measures of
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the lest section.

6.6 Joint Moments

Nonlinear functions can be introduced by sguaring or

otherwise transforming window elements prior to computing

moments. Let ]

Mijk = (1/n%) Y ot e Ko (6-2)
r,c

This reduces to the spatizl moments when k = 1 and to the

statistical moments when i = j = 0. Tt is possible that
the joint moments are more powerful descriptors than the

spatial and statistical features together.

Preliminary trials proved that the texture features
of Eguation 6-2 are of no use for k ¥ 1. This prompted
the correction of higher moments for the k =1 2nd k = 2
moments. The correction formules are exactly analogous to
Eguations 2-1 through 3-4. This section will investigate
the 432 features generated bty the twelve mecro-statistics g

applied to the corrected Mijk for i and j ranging from

zcro to two and k ranging from one to four.

Table 6-8 shows that only the AVE, VAR, and SDV
macro-features are very strong, and then only for 3x2

micro-features. The only class of micro-features worth

computing is the Mijl set, which is identical to the Mij

set of Section 6.4. It is surprising that better
classificetion accurecies are not achieved, considering
the enormous computational resources thrown at the

problem.
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TABLE 6-8. JOINT MCMENT CLASSIFICATICON ACCURACY

3x3 5x5 2x3 5x%
Feature Set Global Global Adaptive Adaptive
MOOk 56.05 48.44 62.30 46 .88
MO1lk 54.30 36,43 48.19 38.43
MO2k 56.79 19.63 53.27 -
M10k 48.54 44.19 47.41 45.4]1
Ml1lk 45.85 39.01 41.65 36.23
M12k 48.10 43.31 46.39 45.17
M20k 36.77 24.71 45,17 20.75
M21k 52.20 36.91 49.02 36.91
M22k 48.10 21.53 41.31 -
Mijl 81.05 65.67 77.00 67.72
Mij2 66.75 57.52 70. 26 58.64
Mij3 62.50 45.75 58.20 48.0%
Mij4 62.40 57.86 62.23 55.18
MijkAVE 83.01 65.14 69.63 56.88
MijkVAR 76.03 64.26 80.237 68.99
MijkSKW 54.98 42.04 57.86 40.92
MijkKRT 53.56 41.85 54.69 38.9¢6
MijkSDV 80.96 67.14 83.54 69.48
MijkACV 54.20 42.77 61.52 42,41
MijkASK 42.92 33.25 58.131 32.47
MijkAKR . 37.89 38.38 38.57 29,06
MijkMIN 62.06 57.23 54.74 56.64
MijkMAX 52.54 50.54 53.27 49,27
MijkRNG 60.79 60.06 59.42 59.91
MijkMID 60.01 47.75 55.57 41.02

6.7 Combined Moments

This section combines the IMG, LPL, and SBL micro-
features with the 3x3 and Sx5 AVE, SDV, SKW, KRT, =2nd Mij
micro-features. 1Twelve macro-statistics are computed for
each of the 29 micro-feature planes, generating 348

texture measures.

The first section of Table 6-9 shows that 3x? moments
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TABLE 6-9. CCMBINED MOMENT CLASSTFICATION ACCURACY

Feature Set Adaptive
3x3 88.67
5x5 73.73
3x3+5x5 85.25
3x3 VAR+SDV 84.08
3x3 VAR 82.137
3x3 SDV 86.04
contain more texture information than 5x5 moments. In

fact, when both are used none of the 5x5 measures enter
the discriminent functions. They contezin no information
which is not more ecasily extracted from 3x3 measures.
This does not mean thet a psrticular 5x5 feature measures
exactly the sazme thing as the corresponding 3x2 feature,
but that the set of 5x5 features contains the same texture

information as the set of 3x3 features.

The second section shows that standard deviation
macro-statistics of the 3x3 moment planes contain nearly
as much information as all twelve macro-statistics.
Variables regquired for 86% clessification accuracy are
M10SDv, LPLSDV, M11SDv, M01SDbv, M128DV, M20SDV, KRTSDV,
SpvsSDv, and M02SDV. If some of these variables were
unavailable it is guite likely that others among the 348
could be found to provide the same informetion., A scatter
plot of the eight texture clssses against the first two
principal axes looks very similar to those produced with

co-occurrence and other texture features.
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6.8 Ad Hoc Masks

Many researchers have suggested texture mezasures

based on edge per unit area or average Laplacian. Qur

experimentél results, documented in the next chapter, show
that these are wise choices. Standard deviations of 3x3
spot and edge measures are very powerful features.
Averages computed within threcholded feeture planes would

be very similar.

Y The quality of these measures suggests further
experimentation. The following convolution masks have

been chosen as spot and ring detectors:

) [ 1 -2 1 "0 -1 0
SPTl = |-2 4 -2 SPT2 = |[-1 4 -1

1 -2 1 0 -1 ol

-1 -1 =17 -1 0 -17

SPT3 = [-1 8 -1 SPT4 = | 0 4 o0

(-1 -1 -1 .1 0 -1]

-2 1 -2 -1 1 -1

SPT5 = | 1 4 1 SPT6 = | 1 0 1

-2 1 -2 -1 1 -1

Note that the SPT] mask is the lLaplacian of previous
sections. The coefficients of these masks sum to zero,
making computed texture measures invariant to luminance

shifts. Otherwise there was no particuler theory behind

oo the selection of these masks.
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Elongated spots can appear as thin lines. These may

be dectected with the following masks: i
-1 2 -17 ~1 <1 ~1] i i
LNEl = |[-1 2 -1 INE2 = | 2 2 2

-1 2 -1l -1 -1 -1, 11

|

[0 1 0 F1 0 -1 :
LNE3 = |-1 0 -1 INE4 = | 0 0 O ; 4
Lo 1 ol -1 0 1l O
3

LNE4 texture measures &re the csame 25 the M1l measures

e

suggested in fection 6.4.

Large spots, lines, and regions may be sensed by cdge ’

detectors. We shall use

[-1 0 17 -1 -1 -17 :
EDGl = |-1 0 1 EDG2 = | 0 0 0 ]
-1 0 1] L1 1. 1) ]
-1 0 1] -1 -2 1]
EDG3 = |-2 0 2 EDG4 = | 0 0 0
-1 0 1] L1 2 a1

The first two masks &are identical to the MO0l and Ml0

spatial moment masks.

There is anatomical evidence that the eye contzins

ceparate detectors for bkright spots end for dark spots.
There may 2lso be neurons which respond similerly to both

positive and negative spots. We casn test suchk texture
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features by measuring response magnitude. Using magnitudes
is @elso a2 way of introducing nonlinearities in the
discriminant functione. Absolute values of the micro-

features will be denoted by

ASPi = |SPTi|
ALNi = |LNEi|
AEDi = |EDGi|

The notation is meant to indicate absolute response to »
mask rather than response to an absolute mask. Micro-

fezture ALN4 has not been computed.

Edge detectors in common use respond ecqually to edges
in different directions. Rotetion-inveriant micro-

features used for this study will be

1Nl = V(NED) 2 + (LNE2) 2

ILN2 = ALN3

IED]1

Y(eoe1)2 + (EDG2)2

1eD2 = Y (£0G3)% + (EDG4) >

Again, the notation represents feature plane operations
rather than operations on the convolution masks. IEDl and
IED2 2re commonly known as the Prewitt and Sobel edge

detectors.

It turns out that these 1local moments provide
exceptionally strong texture messures. When run with the
combined moments of the previous section, these features
are the only ones entering the discriminant functions.

(Of course, some of these features are duplicates of the
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LPL, SBL, MO0l, M10, anéd M1l fcetures.) The etatigtice]l
moments of Section 6.2 were not made available, but they
have been shown 1less powerful then the cpatiz] moment

features.

TABLE 6-10. AL HCC MCMENT CLASSIFICATION ACCURACY

3x3 3x?
Feature Set Global Adaptive
SPT 76 .81 74.07
LNE 75.68 67.82
EDG €68.46 64.€0
ASP 74.51 72.17
ALN 71.6€8 68.85
AED 69.58 67.53
ILN 47.61 54.64
IED 56.15 £5.18
SPT+ASP 75.83 72.46
LNE+ALN+ILN 73.78 74.61
EDG+AED+IED 66.50 62.29
AVE+VAR+SDV+ACVY - 86.52
AVE+VAR+SDV B7.16 87.%¢
AVE+VAR - 86.28
AVE+SDV - 87.50
VAR+SDV 86.92 84.77
VAR 80.42 82.14
SDv 87.45 85.79

Table 6-10 shows the clsssification results with
various subsets of the zd hcc texture measures. None of
the single-type subsets perform well. Even the combined

subsets, such as SPT+ASP, 3o not perform well. Cther

104




experiments (not shown) indicate that several Spot and

Line features are needed. Fdge features are also useful.
Absolute features are importent, but rotation-invariant

line and edge features arc of little use.

The final section of Table 6-10 is besed on the
combined set of 20 micro-features, but with wvarious
subsets of the macro-statistics. The first 1line,
AVE+VAR+SDV+4+ACV, is essentielly ecuivelent to the entire
set of macro-statistics. The following lines show that
very little discriminant power is lost by using only the
SDV statistics. The differences between pairs of very
similar features, <such &s (EDGISDV - EDG3SDV), =are of
great importance, cpperently kecsuse the difference forms
2 feature nearly orthogonal to the originecls. Tebles 6-11
through 6-13 show the discriminating powers of individual
features. Lines with no F-ratios above 200 have been
omitted. Interestingly, none of the SPT3, SPT4, SPTS5, or
SPT6 features were of this strength, nor were the absolute
versions of the seme features. Only the SPT3 features
even came close. Tt is difficult see why thig should be

SO.

Also missing cre the rotation-invarisnt Line feetures
end most of the rotation-inveriant Fdge features. Cnly
the Prewitt cperator, IEDl, hes a retio above 200.
Evidently, edge per unit areaz texture measures should be
based on directionsl gredients rather than aqradient

magnitude.

The difference in strength betweern LNE3 and LNE4
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TABLE 6~11. AD HOC SPOT F-RATICE

Feature Global Adaptive Fecature Global Adaptive
SPT1VAR 707 609 SPT2VAR 280 268
SPT1KRT 251 250 SPT2KRT 144 178
SPT1SDV 851 700 SPT2SDV 293 274
SPT1AKR 261 263 SPT2AKR 41 a7
SPT1MIN 429 374 SPT2MIN 192 183
SPT1MAX 512 444 SPT2MAX 316 285
SPT1RNG 571 488 SPT2RNG 376 336
ASP1AVE 849 690 ASP2AVE 252 233
ASP1VAR 665 607 ASP2VAR 364 382
ASP1SKW 216 225 ASP2SKW 128 156
ASP1SDV 784 671 ASP2SDV 359 355
ASP1ACV 318 354 ASP2ACV 172 219
ASP1ASK 216 225 ASP2ASK 128 156
ASP1MAX 519 449 ASP2MAX 327 291
ASP1RNG 518 499 ASP2RNG 327 291
ASPIMID 519 450 ASP2MID 327 291

‘“;I ki i i




TABLE 6-12. AD HOC LINE F-RATICS
Feature Global Adaptive Feature Global Adasptive
LNE1VAR 182 292 LNE2VAR 581 499
LNE1RRT 387 455 LNE2RRT 31 30
LNE1SDV 231 364 LNE2SDV 1068 gl10
LNE1AKR 271 29¢ LNE2AKR 25 25
LNE1MIN 52 82 LNE2MIN 599 515
LNE1MAX 122 163 LNE2MAX 501 438
LNE1RNG 94 144 LNE2RNG 766 650
LNE3VAR 40 96 LNE4VAR 837 713
. LNE3SDV 44 96 LNE4SDV 1245 977
. LNE3MIN 58 68 LNE4MIN 543 434
. LNE 3MAX 49 51 LNE4MAX 506 418
LNE 3RNG 66 74 LNE4RNG 773 628
r ALN1AVE 285 432 ABLN2AVE 1009 730
ALN1VAR 132 222 ALN2VAR 502 475
ALN1SKW 265 328 ALN2SKW 20 17
ALN1KRT 201 219 ALNZ2KRT 10 7
i ALN1SDV 147 240 ALN2SDV 980 81¢
ALN1ACV 573 651 ALN2ACV 82 91
ALN1ASK 285 328 ALN2ASK 20 17
ALN1MAX 77 117 ALN2MAX 616 530
ALN1RNG 76 116 ALN2RNG 615 529
ALN1MID . 77 117 ALN2MID 617 530
] ’
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TABLE 6-13. AL HOC EDGE F-RATICS

Festure Globel Adaptive Feature CGClobal Adaptive
EDG1VAR 258 587 EDG2VAR 797 909 P
EDG1SKW 221 22¢ EDG2SKW 62 62 3
EDG1KRT 183 249 EDG2KRT 16 24
EDG1SDV 274 618 EDG2SDV 1490 1486
EDG1ASK 198 208 EDG2ASK 23 22
EDG1MIN 100 125 EDG2MIN 944 956
EDG1MAX 153 248 EDG2MAX 765 727 ;
EDG1RNG 136 249 EDG2RNG 1388 1407 i
EDG3VAR 243 545 EDG4VAR 810 917
EDG3SKW 237 247 EDG4SKW 61 51
EDG3KRT 202 276 EDG4KRT 31 46
EDG3SDV 256 573 EDG4SDV 1510 1492
EDG3ASK 217 230 EDG4ASK 26 26
EDG3MIN 91 108 EDG4MIN 945 967
EDG3MAX 147 242 EDG4MAX 776 730
EDG3RNG 123 222 EDG4RNG 1296 1415 '
AED1AVE 289 586 AED2AVE 1343 1245 i i
AED1VAR 200 534 AED2VAR 788 1058 P
AED1SKW 168 226 AED2SKW 21 29 .
AED1SDV 202 527 AED2SDV 1430 1664 P
AED1ASK 167 226 AED2ASK 21 29 ;
AED1MAX 92 159 AED2MAX 1206 1252 .
AED1RNG 91 158 RED2RNG 1202 1250 !
AED1IMID 2 160 AED2MID 1209 1254 !
AED3AVE 276 551 AED4AVE 1156 1222
AED3VAR 180 480 AED4VAR 804 1101
AED3SKW 182 246 AED4SKW 36 50
AED3SDV 180 475 AED4SDV 1452 1714
AED3ASK 182 247 AED4ASK 36 50
AED3MAX 82 140 AED4MAX 1205 1254
AED3RNG g1 138 AED4RNG 1202 1252
AED3MID 83 141 AED4MID 1208 1255 |

{
IEDI1VAR 63 214 IED2VAR 53 156 '

IED1SDV 64 218 IED2SDV 85 159
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features should be noted. The two micro-operators are
similar, being essentially rotated versions of each other.
For some reason the diagonal line detector is much more
power ful. This could be due to anisotropy of the data
set, but results to be presented in the next chapter show
much stronger discrimination for vertical and horizontal
features than for any diagonal feature. The only other
explanation which presents itself is the separable nature
of the LNE4 mask. All of -the masks which work well céan
easily be expressed as the product (or convolution) of a
vertical vector and a3 horizontal vector. None of the

masks which work poorly have this property.

Separability into wvertical and horizontal festures
might well be of importance in bioclogical vision systems.
Octopi and rats have great difficulty discriminating
diagonals in different directions. Rabbits, cats, and
humans are known to discriminate stimuli near the vertical
and horizontal more accurately than those which zre nearly
diagonal. The apparent diagonal structure of the LNE4
mask could thus be less important then its horizontal and
vertical decomposition. It is difficult to see, however,
how this separable structure could be important in a

mathematical discriminant anslysis.

6.9 Summary

This chapter presented many sets of texture measures,
all fitting the spatial-stetistical peradigm. Local
statistical moments were found useful only when combined
with spatial moments such as the Laplacian. Spetial

moments alone are &lso lzcking, although more powerful
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than co-occurrence texture measures. Rotation-invariant
moments are somewhat weaker, but poscsibly useful. Full-
invariants and joint spatiazl moments are near1§ invariant
to texture differences. Some of the 3@ hoc 3x3 operators

work well, others do not,

A few other lessons have been learned:

- Texture can be meesured with very locel
operators.

- The 5x5 spatial moments are Jjointly less
powerful than the 3x3 moments, and contain no
additional texture information; this may be an
inherent fault of perimeter-weighted mesks.

- Convolution masks which are Zero-sum and
separeble seem to work best.

- Statistics of rotation-invariant measures work
less well than linear combinations of
directional statistics.

- The only macro-statistic needed is the standard
deviation.

We shall use these lessons in the next chapter to develop

even better texture 2anelysis methods.
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CHAPTER 7
TEXTURE ENERGY MEASURES

This chapter develops our final spattal-statistical
texture model, one incorporating the best of our previous
models. We shall measure texture in much the same way as
in the previous chaptef, convolving smell center-weighted
filter mesks across the image and then computing
statistics within a window around each pixel, The
responses to several such transforms will then be combined
in discriminant and classification functions for a set of

known textures.

7.1 Center-Weighted Filter Masks

Figure 7-1 shows three sets of one~dimensional
convolution masks. Wie suggest that these be czlled the
Lattice Aperture Waveform Sets of orders three, five, and
seven. The names of the vectors are mnemonics for Level,
Edge, Spot, Wave, Ripple, Undulaetion, 2nd Oscillation.
Vectors in each set are ordered by secuency4. The vectors
are weighted toward the center, 211 are symmetric or
antisymmetric, and all but the Level vectors are zero-sum.
The vectors in each set are independent, but not

orthogonal.

4Number of zcro crossings: zero for L7, six for 07.
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L3
3= [-1 o 1]
s3 = |-1 2 —1]

is= [1 4 6 4 1]
5= [ -2 o 2 1]
ss= -1 0o 2 o -1]
ws = [-1 2 0 -2 1]
R = [1 -4 6 -2 1]

7= [1 6 15 20 15 6 1]

E7= [-1 -4 -5 o 5 4 1]
s7= [0 -2 1 4 1 -2 -]
wi= |3 0o 3 0 -3 o 1]
7= [1 -2 -1 4 -1 -2 1]
07 = [-1 6-15 20 -15 6 -I]

Figure 7-1. Center-Weighted Vector Masks
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The 1x3 vectors form & basis for the larger vector
setss. Each 1x5 vector may be generated by convolving two
1x3 wvectors. S5, for instance, can be generated as
(L3)*(S3), (S3)*(L3), or (E3)*(E3). The 1x7 vectors can
be generated by convolving 1x3 and 1x5 vectors, or by
twice convolving 1x3 vectors. The secuency of a generated
vector is the sum of the component seaquencies.

Figure 7-2 shows the nire mesks generated by
convolving @ vertical 3-vector with a2 horizontal 3-vector.
This may be considered a cross-product or vector
multiplication operation, but convolution has special
significance here. We shall extract texture information
from image data by convolving with the 2x3 masks, just as
we did with spetial moment and ad hoc maesks. Convolution
with the component one-dimensional masks gives exactly the
same result as convolution with 2 separable 2x3 mask.

The nine independent 3x3 masks form & complete set.
Any 3x3 maetrix can be expressed as & unigue lineer
combination of the masks. This was also true of the
perimeter-weighted cspetizl moment masks, but the center-
weighted set contains the edge, lire, 3nd spot masks which
were shown in Section 6.8 to be more powerful. Eight of
the center-weighted masks are zero-sum, & property shown

in Section 6.4 to be important.

The 5x5 masks and 7x7 masks (not shown) are similar,

SThe 1x3 vector elements can be derived from
cocfficients of the polynomials (a+b){(e2+b), (8+b)(a-b),
and (a-b) (a-b). Indeed, any of the vector sets may be
generated from coefficients of the binomial expansion.
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AP -1 01 12 9
2 8 2 2 0 2 -2 4 -2
1 2 1 -1 0 2 1 2 -1
L3L3 L3E3 L3s3
- 1 8 " 7
-1 -2 -l 1 0 -1 1 -2 )
0 0 ¢ 0o 0 0 0 0 0
(1 2 1] -1 0 2 1 2 -1
E3L3 E3E3 E3S3
-1o-2 -1 1 0 -1 1 -2
2 4 2 -2 0 2 -2 4 -2
-1 -2 -1 10 -1 1 -2 1
S3L3 S3E3 3853

Figure 7-2. 3x3 Center-Weighted Masks

with even stronger weighting toward the center. The
separable structure of these mésks makes it feasible to
apply them as spatial-domein filters. A 5x5 convolution,
for instance, can be implemented as two 3x3 convolutions,
a 5x1 and & 1x5 convolution, or two 3xl 2and two 1x3

convolutions.

We have also investigated the discriminating power of

one-dimensional masks. Previous experiments have shown
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1 that rotation-invariant filters, such eés the Sobel

gradient megnitude, zare only fair as texture measures.
Better results are obtained by using directional masks
separately and then combining the texture measures. We
have applied horizontal and vertical masks in pairs,
although the discriminant analyses have not been
constrained to assign egqual weights. Sets of 13x5, 2x7,

and similar rectangulzar masks have not been tried.

7.2 Macro-Statistic Selection

It is time to re-examine our set of macro-window

‘ﬁb‘-

texture stetistics. In the last chapter we used twelve

measures. Experience has shown that either the variance
or standaerd deviation alone 1is sufficient to extract

texture information from the filtered images.

Varisnce is an averzge squared deviation from the
mean. For a zero mean field, as produced by convolution
F with a zero-sum mosk, variance 1is the zverage of sauared
. signal values, It is thus &an energy meesure, in the

formal sense of the word. It measures the totel eneray

within ¢ window. TIf the imege hes becen filtered, it

measures local energy within the pass band. The SDV
macro-ctatistic is the sguare root of this locel eneray.

It mey be considered a "texture energy" measure.

These statistics are more local then previously L
studied frequency-domein texture measures. Freouency
components are measured with very small convolution masks.
Eech micro-window is treated independently, without regerd

to its phese relationships with other micro-windows. This
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is appropriate for textures with short coherence length or
correlation distance. It is less powerful than Fourier
methods for man-made textures with inberent

synchronization of texture element spacings.

Energy and varisznce are both defined as sums of
squares because such sums are analyticelly tractable. The
physical world is under no constraint to be tractable. It
is probable that the human visual system avoids root-mean-
square computations, and quite possible that simpler

statistics are more appropriate for texture snalysis.

Tables 7-1 and 7-2 present three alternatives to the
standard deviation. The first, ABSAVE, ic computed as the
average absolute value within & macro-window. For é zZero
rean field, it may be considered a fest approximation to
the standard deviation. The table of F-ratios shows that
it performs poorly only with L3L3, the 3x3 operator which
is not zero-sum. The table of classification accuracies,
vk .ch was computed for the adaptively egualized texture
set using fifty 3-vector, 5-vector, 3x2, and 5x5 feature
sets, shows that ABSAVE features are jointly more power ful
than SDV features, and nearly as powerful as both sets

together.

The SDV &nd ABSAVE macro-statistics share a common
weakness. Neither can distinguish between a dark field
with bright spots and a bright field with dark spots. In
statistical terms, the two fielde differ in skewness. TIn
frequency terms, they differ 1in phase rather than in

energy. A method of measuring local phase relationships
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TABLE 7-1. MACRO-STATISTIC F-RATIOS {
Micro- o
Feature Spv ABSAVE PCSAVE NEGAVE
L3L3 63 2 2 2
L3E3 573 551 293 291
L3S3 345 415 378 392 a
i
E3L3 1492 1232 648 625 |
E3E3 977 933 887 880 ;
E3S3 655 677 671 677 4
S3L3 811 727 666 672 4
S3E3 734 690 688 685
s3s3 700 690 688 691
TABLE 7-2. MACRO-STATISTIC CLASSIFICATION ACCURACTES :
E |
Feature Set Global Adeptive 3
SDV 85.59 85. 60
ABSAVE 88.09 87.1]
SDV+ABSAVE 89.16 87.55
POSAVE 85.79 87.06
NEGAVE 87.01 85. 94
. POSAVE+NEGAVE 85.79 87.21

is needed. One solution is to teke averages of positive
values instead of absolute values. We will call this the

POSAVE statistic,. It is reasonable that neurons in the

f
i visual cortex might perform such & clipping function.
There might also be a bslancing set of néurons responding
only to luminances below average. We will compute NEGAVE
i P TP R .
as the negative average of maecro-window values below zero.
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Tables 7-1 and 7-2 show that the two one-gided
measurcs perform slightly less well then the SDV and
ABSAVE mcssures, although much better than the co-
occurrence stetistices of Section 4.2. For the present
deteset there 1is no compelling reeson to use these less
powerful statistices. We shell restrict our zttention to
the ABSAVE stetistic, keeping ir mind thet there will be
some texturcs not discriminegble by these mcesures. ABSAVE
featurcs are preferred to SDV feetures only beczuse of

6

their computetional simplicity . Both appeer to be

equivalent measures of texture energy for this deteset.

7.3 Micro-Feature Selection
It is desireble to reduce the feature set as much as
possible. We shall begin by studying the one-dimencsionel

features.

Teble 7-3 presents individual F-retios for the
horizontal (H) and vertical (V) mesks. The most striking
pattern 1is the exceptional strength of the vertical
measures contrasted with the moderate cstrength of
corresponding horizontal mezsures. This reflects the
presence of directional textures in the dateset. 2 more
significant pattern is that Spot features ere elweys the
most powerful, with power gradually decrezsing as the mesk
sequency 1increseses. This despite the fect that ESpot
filters of different lengths ©pess different spztiel

freguency bends. Edge features aeore clso strong texture

6An algorithm for computing ABSAVE statistics across a
feature plene is cocumented in Appendix R,
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discriminators. Level festures are of no use because of

the histogram equalization,

TABLE 7-3. 1-DIMENSICNAL APSAVE F-RATTOS

Feature Global Adeptive Feature Global Adaptive
HL3 0] 2 VL3 0 2
HE3 220 403 VE3 1328 1079
HS3 272 367 VS3 935 658
HL5 0 2 VL5 0 2
HES 151 304 VES 1210 1152
HS5 258 415 VS5 1285 1113
HW5 217 202 VW5 1032 737
HRS 282 337 VRS 742 543
HL7 0 2 VL7 0 3
HE7 94 178 VE7 1048 1076
HS7 240 412 vSs? 1438 1292
HW7 245 35€6 vW? 1297 978
HR7 197 272 VR7 1044 760
HU7 20¢ 271 vu? 847 608
HO?7 291 336 Vo7 695 527

Neurologicel studies [741 show thest the visual cortex
computes edge measures in a2pproximately ten-degree
increments. We have investigeted diagonal one-dimensional
features, &lthough they are not properly members of the
separable feature sets.

Table 7-4 lists F-ratios for one-dimensional features
slong the forwerd disgonal (F} é&nd backward diagonal (B).
The forward diagorel 1is from top left to bottom right.

Thes» feeturcs show far 1lsss power than corresponding
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TABLE 7-4. TDJIACCONIL FEATUFE AESAVF F-RATTICS

Fecature Global  Adaptive Feeture  Global PAzptive
FL3 0 2 BL3 0 ?
FE3 64 95 BE3 49 62
FS3 68 70 BRS3 12¢ 1321
FL5 0 2 BL5 0 2
FES 73 119 BES 48 7Q
FSS 75 107 BSS 59 67
FWS 48 46 BWS 70 67
FRS 133 121 BRS 219 107
FL? 0 2 BL7 0 2
FE7 71 102 BE7 41 69
FS? 88 144 BS7 64 92
FwW? 74 98 BW7 55 58
FR7 45 45 BR7 60 5€
FUO?7 71 65 BU7 121 118
FO7 164 144 BO7 254 224
horizontal and verticel meesures. Tﬁis was unexpected,

even given thet element spacing is 'somewhat wider for
diagonal measures. The discriminating <strengths 4o not
even follow the same sequency pattern. The remerkable
differences between rectilinesr znd Aizqons]l responces
must be taken 2s 2 warnirng that Jdiscrimineting power of
the sepsarable mesks mey depend s%ronqu on orientation of
the training textures. Indeed, 11 results 1in thie
dissertation are derived. from & perticulor dataeset, and

should be extrapolated with cere.

Figqure 7-3 presents F-ratios for two-dimensional
festures, rounded to the nearest hundred. The extreme
discriminating power of vertical Edge end fpot features is

epparent. The matrices would ke symmetric if the textures
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E 12 9 7
S 7 7 7
L E s w R
L 0 5 6 4 4
E 13 9 7 6 5
g 12 11 10 8 6
W 8 8 8 7 7
R 5 5 6 6 7
L E S W R U C
L 0 3 7 5 4 2 4
E 11 8 6 6 5 4 4
8 13 12 10 9 8 7 5

W 10 10 9 9 8 7 6

Figure 7-3. Sauare Mack F-R.tios, in Bundreds
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werc non-directionel or rendomly directionel, Fvidently
the F-ratios would then be larqest e2long the diagonal,
especizlly in the middle sequencies. The other important
fact is the great discrimineting power of even the weakest
of these texture measures (excluding lLevel features).
Very few of the co-occurrencc F-ratios were as high es

200.

Joint classification accuracies for verious feature
subsets are given in Table 7-5. The first and second
columns represent classification over globeslly egualized
and eadeptively ecuelized 1images, &s in the previous
chapter. The third and fourth columns are similar, but
with discriminant 2nd clzssification functions computed
directly on the entire feature set instead of 2 selected
subset. Stepwisc znalysis with the F-ratio threshold of
40.0 typically selects nine to twelve featurece. 2 lower
threshold would incresse the number of features, and
slightly increase clessificeation accuracy. Direct
analysis usuelly achieves the highest possible
clessification eccuracy, but at the cost of evaluestinag as

rieny as 100 features for eech pixel to be classified.

The first five rows of .Table 7-5 eare bzsed or
rorizontal and veorticel one-dimensional convolution mesks,
The six 3-vectors 2lone perform slightly better than the
elaborate co-occurrence features of Chapter 4, This is
amazing considering the simplicity of the texture enerqy

method end the meny experimental vindications of

Heralick's co~occurrence statistics. The S5-vector
statistics perform oeven better. Using 7-vectors or
122
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TABLE 7-5. ABSAVE CLASSIFICATION ACCURACIFS

Direct Direct
Feature Set Global Adaptive Global Adaptive
H3+V3 76.51 74.76 76.90 75.34
H5+V5 82.42 81.45 83.11 81.69
H7+V7 82.57 81.54 83.98 82.28 .
H3+V3+HS5+4V5 82.08 81.59 85.45% 84.78 ;
H3+V3+H5+V5 i
+H7+V7 82.7] 81.98 87.21 85.99 !
H3+V3+F3+B3 82.137 80.76 82.67 80.71
H5+V5+F5+B5S 86.23 85.11 87.65 86.22
H7+V7+F7+B7 84,28 85.16 88.77 87.€5
H3+V3+F3+B3
+H5+VS5+F5+B5 86.62 86.43 90.48 87.94
H3+V3+F3+B3
+H54+V5+F5+4BS '
+H7+V7+F7+B7 85.64 86.52 84,28 90 .0a
3x3 84.67 §2.67 84.132 83.15
5x5 86.77 86.18 88.96 87.84
Tx7 . 87.65 86.67 89.65 88.42
3x3+5x5 88.43 87.40 90.53 89.50
3x3+5x5+7x7 R8.133 86.62 92.77 92,57
H3+V3+3x3 84,91 83.06 86,47 85.7?%
H5+V5+5x5 86.€62 85.89 90.0¢ ge .92
H7+V7+7x7 87.70 86.91 90.87 20, 2?
H3+V3+3x3
+HS5+V5+5x5 §8.09 87.11 92.48 91.5%
H5+V5+5x5
+H7+V7+7x7 88.04 86.57 91,80 91,21
v o 123




combining more than one vector size givee no significent

improvement.

The next five rows incorporate forward and backward
diagonal <stetistics. Clzssificetion accurecies improve
significently. The 5-vector stztistics elone Are
sufficient to achieve B86% classificetion eccurecy, close
to the meximum reached in this study. The combined

feazture =ets have little more power, but previde incight

into the selection process., Ciscriminent functions are
bocsed on vectors of @2l1 directions and sizes. Different
subsets ere selected in the globelly eaqualized and

eCeptively rquclized cases, yet 2ll1 celected features ore
either Edge cstetistics or the symmetric Cpot, Ripple, &nd
Cscilletion stetistics. 1MYone of the zntisymmetric Wave or

Unduletion fecturce were found useful.

The third section of Table 7-5 shows the two-
cimecnsionel mesks to be just as powerful. Length five
mesks are  zgein  best, although the evidence 1is 1legs
conclusive, The adeptively ecuslized 3x3+5x5 feature
subset differs from the 5x5 feeture subset only by
inclusicn of L3S3, the ninth and lest feature to be 2dded.
The fifth enelysis fevors 5x% and 7x7 features about
ecually. Selected <ctoatistics agein differ from one
enalysis to eanother, but Wwave features cre rere éend
Undulztion features are ebsent. The consistent inclusion
of RS5R5 1is somewhat surprising <cince ma*tching image

structures must be oguite rere. This mask resembles 2 two-
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dimensional sinc7 or Bessel function. The similar 85€5
feature is individually very strong, but has 1little power

when combined with other features.

The final section combines one-dimensionz2l =znd two-
dimensional features. Tt can be seen that classificarion
accuracies improve very little. Two-dimensional features
enter the models first, followed by 2 few of the longer

are few Wave and no

D

vector feztures. Again . ther
Undulaticn featurces, despite their high individual
F-ratios. Otherwise the selection seems somewhet
erbitrary. Scatter diagrams show that the discriminent
dimensions are the same ones found with co-occurrence
features and with every other texture set we have tried.
The chief difference 1is that there 1is slightly 1legs
discriminating power in the first two principal components

and correspondingly more in the third component.

7.4 Summary

We have seen that one-dimensional ané two-dimensional
convolution masks generate powerful ‘texture measures.
Principal components analysis shows that =211 of the
feature subsets are meesuring the same texture dimensions.
Several simple statistics cre ecuelly good at extracting
the texture information. Further development of these

methods would recuire a more extensive dataset,

7Sin(x)/x, an important function in image processing.

It is the spaticl-domeain representation of 2 scuere low-
pass filter. Tt Aprroximates the circulerly esymmetric
Airy pottern or PBessel function important in Fourier
optics.

e
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Perceptuel studies end comparisons with known features of
biologiceal wvision systems might 2lso 1lead to new

understanding.

In the next chapter, we will develop one set of
texture energy measures into & working texture znalysis
system. Fauivolent performance could probebly be achieved

with eny of the feature sets presented in this chepter.
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CHAPTER 8
SEGMENTATION AND CLASSIFICATION

Thie chapter develops o particuler texture energy
model into & useful texture cenelysis system. Coefficients
are given for four principal component texture planes:
these ca2an ke uscd cs texture measures for éeny dataset.,
Clessification coefficients for the eight training
textures are clso given. Segmentztion examples show that
the «clessifier can be used for blind segmentation of
natural textures, although better coefficients for
particular applicetions could be derived from appropriete

training dats or from the principal component plenes.

8.1 Texture Energy Measures

Figure 1-3 shows the seauence of images used in
measuring texture. The originel imege is first filtered
with 2 set of smell convolution masks. The filtered
images are then processed with & nonlinecr "local texure
energy" filter. This is the ABSAVE moving-window average
of absolute image velues, Such moving-window operations

are very fast even on general-purpose digital computers.

The next step in Figure 1-3 shows the 1linear
combination of texture energy plAnes into 2 smaller number
of principal componen* planee, typically four. This is an
optioneal dats compression step. The component images seem

to represent netural texture dimensions, ~And to be more
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"reliable” than the texture enerqy plznes.

The finel output is a segmented image or
clessification mep. Classification ic cimple ond fast if
the texture clesses are known & priori. Fither texture
enerqy planes or principzl component planes may be used as
input to the pixel classifier. Clustering or segmentation

algorithms must be used if texture classes are unknown.

We saw in the 1last chepter that e2lmost any set of
texture energy transforms could be used to discriminate
the eight textures of our dataset. &x5 convelution mesks
are more powerful than 3x3 masks, and simpler then 7x7
mesks. Separeble square mesks are ezsier to implement on
a digital computer than rectilinear and disgonal mesks.

We shall therefore proceed with the S5x5 measures.

TABLE 8-1. TEXTURE ENERCY CLASSIFICATTICN ACCURACY

Macro-wincdow Size

Feature _3x3 _71x7 15x15 T}x 2}
LESWR 43,55 67.24 - 86.77 97.95%
LESR 41.65 66 .80 86.77 97.7
LSR - - 86.57 95. 8%
LER - - 86.57 -
ILESWR 35.99 58.06 85.11 97.17
ILESR 34,28 58.06 85.11 96.96
ILSR - - 83.89 94.97
ILER - - 84.30 -
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Table 8-1 cshows the clacssification accuracies

achieved with different 5%5 micro-features and
macro-window cizes. The letters in the feature set names lj
stand for the vector masks of the last chapter. LESWR,

for instance, 1is the set containing 211 two~dimensional

masks made of Level, Edge, Spot, Wave, &and Ripple
convolutions. The letter I stands for contrast
invariance. Features were mede invariant by dividing
pixel values in the texture energy plane by corresponding

values in the LSL5SDV plane. L5LS features z2re otherwise

excluded from 211 feature sets in the table. Cther
. feature planes were computed with the ABSAVE
’ macro-statistic. Tabulated values are bzssed on 23025

samples per texture, except that 21x?1 feastures are based
on 1056 szmples per texture. The tahle shows that
classification accuracy drops rapidly as the macro-window
size is reduced below 15x%15. Nesrly perfect
classification of 21x31 blocks is possible, but wc will
see later that segmentation gquelity 1is poor ot this

resolution.

Contresst 1invarience hes & very small effect on
clessification eccurecy, but permits & big savings in
computational cost. This ie because histogram

, equalizetion 1is wunnecessary. We shall use contrast-

invariant features throughout the rest of this chepter.

All of the 15x15 ferture sets perform well, even the
eight-member ILSR and ILER scts. The antisymmetric Weve
features &sre of little  use. We shall confine our

g attention to the vector masks
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s=[1 4 6 4 1]
ES5 = [-1 -2 0 2 1]
ss=[-1 0 2 o0 -1]
RS = [ 1 -4 6 -4 1]

Sixteen two-dimensional masks c¢an be formed from
these wvectors. The number of masks could be reduced to

nine or even six with little penalty, but we shall present

coefficients and classification results for the full set
of 15 zero-sum mesks. The four most important masks for

our experimental dataset sre shown in Figure 8-1.

TABLE 8-2. STANDARDIZED COEFFICIENTS

Féature Cmp 1 Cmp 2 Cmp R Cmp 4

IL5SES -0.277 0.238 0.092 0.239

IL5S5 -0.105 -0.055 -0.065 -1.21%° !

ILSRS -0.269 0.284 0.179 1.210 ;

IESLS 0.204 0.331 -0.570 -0.412

IESES 0.011] -0.248 0.318 -1.264 .

IESSS G.188 -0.084 0.166 ~0.122 |
IESR5 0.122 -0.147 0.241 0.043 1Y
ISSLS 0.177 0.359 0.482 0.508 .
ISSES 0.215 -0.185 0.161 1.01)

18585 0.026 -0.087. 0.622 0.437

1S5RS 0.053 -0.212 -0.054 0.011

IRSLS 0.006 0.291 -0.1371 -0.160 E
IRSES ¢.081 0.196 -0.265 -0.020 E
IRS5SS -0.168 -0.270 -0.215 -0.127 4
IRSRS -0.171 -0.429 -0.693 -0.252

Relative strengths of the features may be estimated

from Table 8-2. The principal component cocefficients are
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given for features reduccd to zero mean znd unit stendard

deviation. Table 8-3 gives the same coefficients for
unstanderdized features. These ere more wuseful for
eactuelly computing the princips] component images.
Different sets of ccefficients must be used for different

sets of features or for different window sizes,

TABLE 8-3. UNSTANDARDIZED CCFFFICTENTS

Feature Cmp 1 Cmp 2 Crp 3 Cmp 4
IL5ES -4.26¢6 2.658 1.41¢ 5.214
IL5SS -2.127 -1.110 -1.227 -24.721
IL5RS -3.070 3.239 2.046 “12,798
IESLS 3.578 5.801 -9,98¢ -7.241
TESES 0.743 -17.515 22.427 -80,249
IES5SS 21.520 -9.€50 18.975 -12,926
IESRS5 6.15€ ~7.398 12.193 2.168
ISS5LS 5.466 11.079 14,891 15.721
ISSES 25.56¢ -22.015% 12,150 119,984
IS5S5 4.813 -16.232 117.367 R2.408
IS5RS 3.936 -23.4 -4.087 0.824
IRSLS 0.128 6.609 -8.427 -31,6132
IRSES 5.995 14.112 -19,662 -1.464
IR5S5 -17.6960 ~28.349 -32,155 -12,245
IRSRS -5.469 ~-14.050 -22.192 -8.069
Constant -0.265 -0.148 -0.069 0.815

8.2 Pictorial Examples

Figure €-2 shows two images which will be used to
illustrate the texture enerqy transform. The first is &
composite of the Prodstz textures. The first two rows of
128x128 Eklocks wer~ tzken from the centers of the Cress,

Raffia, Send, Wwool, Pigskin, Leather, Water, 2nd Wood
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(a) Texture Composite i

(b) House Image

Figure 8-2. Original Images
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images. Histogram equalization was applied to each block
separately. The bottom-left quadrant is composed of 32x3?2
blocks of histogram-equalized images; the bottom-right
guadrant of 16x16 blocks. The resolution is such that
even trained observers would have difficulty identifying

the 16x16 blocks,

The second image is & ctreet scene thet hss been used
by other segmentation researchers. It is availeble in
color, but this study is confined to monochrome
segmentation. The luminance image has been subjected to
histogram equzlization for dieplay. Al texture

transforms were computed on the unegualized version.

Figure 8-3 shows the result of convolving the
original imeges with the L5L5 mesk. The AVE plenes are
just blurred versions of the originels. These imeges aive
some ides of the resolution actuelly available to o
texture segmenter, since texture must be meaéurpd over @

region around each pixel.

The SDV plsnes are more useful as texture feature
planes. They meesure local contrast. By itself this is
not a2 good segmentation feature: it tends to locate edges
rether than regions. Note how little difference there is
in the SDV velues of the different Brodatz textures. The
importance of these feature planes is thet they can kGte
used to remove contrast end edge effects from other
feature planes. We simply take the ratio of eech feature
value to the corresponding 8DV value, This removes

effects of variable scene illuminetion as well es reducing
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(2) Composite L5L5AVE {b) Composite LSL5SDV
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(c) House LS5L5AVE (d) Bouse LSL5SDV

Figure 8-3. Bverages and Standard Deviations
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the effect of edges. Even stronger normelizetion could be

devised ucsing the AVE imeage as well,

Figures 8-4 and 8-5 show the results of filtering
each image with the four most importent center-weighted
masks. ESL5 is s horizontal edge mask. Tt enhances the
horizontal structure in Raffia, while hardly responding to
the vertical edges in Wood. R5RS is a high-fregquency spot
detector: it produces & grainy feature plane which is very
difficult to reproduce. E5S5 is a peculiar V-shaped mask
which responds best to textures with low correlation. TIn
the House image it seems to enhance diagonal edges. L5S5
is a vertical line detector. Tt enhances vertical edges,

particularly repetitive ones such as in Water and Wood.

Figures 8-6 and 8-7 chow the effect of the ARSAVE
texture energy trensform prior to normalization with the
SDV plane. The seperation of textures in the Composite
image 1is obvious. Careful examination of the House images
shows that different parts of the scene &slse have
different relative brightnesses in the different texture
energy planes. Tt should be remembered thet only four of

15 texture plenes sre illustrated.

Figures 8-8 and 8-9 are particuler linear
combinations of the 15 texture energy plenes (after
normalization). The linear combinations eare principal
component transformetions for the eight Brodatz textures.
The Composite images look very similar to texture enerqgy

planes, but the bright and dark zrezs are more uniform.

The House images do not strongly resemble the texture
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the effect of edges. Even stronger normelizztion could be

devised using the AVE image as well.

Figures 8-4 and 8-5 show the results of filtering
each image with the four most importent center-weighted
masks. ESLS5 is s horizontal edge mask. Tt enhances the
horizontal structure in Raffia, while hardly responding to
the vertical edges in Wood. R5R5 is a high-frequency spot
detector: it produces & grainy feature plzne which is very
difficult to reproduce. E5S5 is a peculiar V-shaped mask
which responds best to textures with low correlation. TIn
the House image it seems to enhance diagonal edges. LSS5
is a vertical line detector. Tt enhances vertical edges,

particularly repetitive ones such as in Water and Wood.

Figures 8-6 and 8-7 show the effect of the ARSAVE
texture energy trensform prior to normalization with the
SDV plane. The sepesration of textures in the Composite
image is obvious. Careful examination of the House images
shows that different parts of the scene gzlso have
different relotive brightnesses in the gdifferent texture
energy planes. Tt should be remembered thet only four of

15 texture pleones are illustrated.

Figures 8-8 and 8-9 are particuloar linear
combinations of the 15 texture energy plenes (after
normalization). The linear combinetions are principal
component transformations for the eight Brodatz textures.
The Composite images look very similar to texture energy

planes, but the bright and dark zrezs are more uniform.

The House images do not strongly resemble the texture
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Figure 8-4. Filtered Image Planes, Composite
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(c) ESSS

Figure 8-5.
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(a) ESL5S (b) R5R5

A

(c) ESSS5 (d) L5S85

Figure 8-6. Texture Energy Planes, Composite
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(a) ESLS (b) RSRS

(c) E585 (d) L5E&%

Figure 8-7. Texture Fnergy Planes, House
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(a) First Component

i, .

oA (c) Third Component
Figure 8-8. Principal

' , Y,

({b) Second Component

(d) Fourth Component

Components, Composite
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Figure 8-9. Principel Components, PFouse
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energy planes, perhaps becazuse of contrast reversals. The
discriminant planes are not necessarily principal
component planes for the House textures, but their

discriminating power is obvious.

8.3 Segmentation and Classification

This section will illustrate the quality of image
segmentation which can be obtazined with texture energy
measures. Two approaches will be shown, bl ind
segmentation and classification with 2 priori knowledge of
the texture class statistics. We will use a nearest-
centroid or maximum-likelihood 1linear <classifier as

described in Appendix C.

Blind segmentation requires clustering of the image
data to determine the number and types of regions present.
There are many multivariaste clustering algorithms, but few
designed to segment images. One of the best 1is the
"Ohlander segmenter" now meintained by Dr. Keith Price
[46] . We have used this computer program without
modification, despite the compromises recuired. The first
three principal component planes were used as red, green,
and blue color planes. The fourth principal component
plane was not used. The segmehter thus hed no wey to
distinguish between Water and Wood. Further, the
principal component planes are unimodal and guite unlike
natural color plenes for which the segmenter was designed.
Color transformations (Y-I-0 and Saturation-Hue-Intensity)

had to be used to aid the segmenter.

The first image in Figure 8-10 shows the result of
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(2) 15x15 Segmentation (b) 31x31 Classification

(c) 15x15 Classificetion (d) Partial Classification

Figure 8-10. Segmentation, Composite
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segmenting the Composite picture. The 128x128 blocks are
reasonably well separated into seven texture classes. The

32x32 and 16x16 blocks are not resolved.

The second image shows classification results using
31x31 macro-window statistics for the eight texture
clesses. Large regions are almost perfectly clessified,
but 32x32 regions are cnly perticlly separated. The 16x16

regions ere not resolved.

The third image, classified with 15x%x15 features, is o
better segmentation of the scene. The Wool, Water, and
Wood textures &re czlmost perfectly 1identified; other
textures have at least 78% accuracy across the orfqinal
512x512 images. Errors tend to occur in patches. ©Neither
the clsssificetion nor the principal component measures
tend to "go wild" near region bounderies. Tahle 8-4 gives
the coefficients wused to compute the discriminent
functions. Fach pixel is assigned to the class with the

highest function value.

The fourth imege itc identicel to the third, but with
doubtful <classifications suppressed (shown ag Dblack).
Classification wes skipped unless the highest
classification function exceeded the second highest by at
lezst 20%. It c¢cen be seen that some texture types are

less "certsin" then others.

Figure 8-11 repeets the classification secuence for
the House 1image. Blind segmentation performed very bedly
on this image. The results of texture classification are

surprisingly good concsiderina that pixels &ere beina
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TABLE 8-4. CLASSIFICATICN CCEFFICTENTS

- - —— o = T - e - T R = e = - —— - —— = e -

Actual Grass Reffia Sand Wool Pigskn Lthr Water Wood
IESLS 177 216 176 180 169 202 221 273
IL5SS -153 -190 -162 -188 -156 -178 -57 =105
ILSRS 5 18 4 5 4 1 ) 98
IESLS 253 353 282 285 278 215 274 202
IESES -411 -739 -368 -~700 -403 -354 =270 -691
IESSS 515 591 232 441 237 757 147 46
IESRS 65 -22 12 12 -71 62 -95 -9¢
IS5L5 -207 =138 =227 =333 -31e =222 =391 -254
ISSES 957 411 846 871 940 547 65 65R
IS5S5 222 -895 -333 -655 -798 -539 -876 -256
ISS5RS -64 -105 -22 135 -136 103 =71 =182
IR5LS -17 71 -13 2 78 -14 33 16
IRSES 4 166 79 38 175 -88 22 -12
IR5SS -240 -372 -15 1490 4 112 245 71
IR5RS ~125 -58 -19 151 -10 35 120 -8
Constant -32 -37 -29 -30 -27 -28 -34 -2
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clessed as Raffie, Leather, etc. Major semantic reqions

are isolated in all three versions, except that the car

and lawn are not separated. Note that the piece of
cellophane tape in the lower-rigbt corner is

differentizted from its white backaground. f

TABLE 8-5. CLRSE CCNFUSTON, PERCENT

: Predicted
, Actual Grass Raffiz Sand Wool Pigskn Lthr Water Wood
L]
r Grass 77.8 0.7 9.9 0.4 0.9 0.2 0.0 0.} ;
Raffisc 0.5 91.8 3.1 0.0 4.5 0.1 0.0 6.0 ;
. €ang 4.4 C.6 &0.8 6.4 5.7 4.1 0.0 0.0
» wool 0.2 G.0 6.2 86.9 4,1 2.6 0.G G.0
i Pigskin .4 2.0 15.2 1.7 81.2 0.2 0.0 6.0
Leather 2.3 0.0 4.0 0.9 0.1 ©2.5% 0.2 0.0
Viater G.0 0.0 0.0 2.8 0.2 0.1 9.2 5.6
wood 0.0 0.0 0.0 0.0 0.0 0.4 2.7 96.9
. Tables 8-5 a2nd 8-€& show the relative sepesration of O
t

the eight texture classes in the principel component
space. Pigskin and Sand ere often confused, although it
is difficult to say why. Gress is often clessified as

Send or Leather: the ervorse are nearly &11 in the upper

third of the Gress image, which is in much sharper focus

4 then the rest.




TABLE 8-6. PAIRWISE F-RATTOS

Grass Raffia Sand Wool Pigskn Lthr Water Wood

CGrass - 2639 €23 2187 1649 1013 4581 5087
Raffia 2639 - 1746 4193 1567 3780 4814 5378
Sand 522 1746 - 1437 495 1005 2635 4796
wWool 1187 4193 1437 - 1647 1572 3570 5034
Pigskin 1649 1567 495 1647 - 1998 3500 4885
Leather 1013 3780 1005 1572 1998 - 25€2 1700
Weter 4581 4814 2635 2570 3500 2562 - 1624
wood 5087 578 -4796 5034 4885 31700 1924 -

15 and 24,178 degrees of freedom

8.4 Timing Estimates

Table 8-7 shows the zmcunt of computing time reauired

for verious operations. The totzl time reauired to
ceqment 2n imege degende on the options chosen. Tt cen
vary from 30 to 50 minutes with the present

implementation.

Most of the rur time is consumed by convolutions and
matrix cumulations. The convolutions zre cuite fast, but
could be speeded with specizl herdwarec or optimized code
for each mezsk. The number of filtered imzges, 2nd hence
the number of texture energy pl2nes, could 21so be cut in

helf with very little i1l effect.

Cumul=tion of matrices tezkes only six seconds per
512x512 plene, but there are » lerge number of suchk

opcrotions.  The eoperation itself could be reduced to half

the time by uging optiral technicues, The number of
cumual =*jong could ¢l s he reducnad by computing
149
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TABLE 8-7. TIMING FCR 15X15 CLASSTFICATICN

Tot=2]
Cperation Seconds Minutes
Image Input 21 .25
L5LS Convolution 57 .95
AVE, SDV Computation 41 .68
AVE, SDV Cutput 34 1.12
Convolutions (15) 57 14.18
Feature Plane Output (4) 34 2.22
Energy Measurement (15) 18 2,78
Energy Plane Cutput (4) 34 2.23
Component Initializaetion (4) 0 .02
Component Cumulation (15x4) 6 6.20
Component Output (4) 34 2.23
Class Initialization (8) 3 35
Clsss Cumulation (15x8) 6 12.38
Clessification 45 .75
Classification Output 34 .57
48,05

classifications from the principal component planes
instead of the texture encrgy planes., This savings arows
linearly with thc number of texture clasces and with the

number of feature plancs.

Real -time implementation of texture description is
quite possible. Digital hardweare for 3x3 convolution is
already available. The additional &eccuracy of 5x5
processing could be obtained with two 3Ix3 stages or with 2
1x5 and a b5x1 stage. Only the mecro-||window energy

transform remsins to be developed. The chief problem is
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the number of imege rows which must be held in memory.

This could be reduced to zero by using & "fading memory"
energy transform instead of an accuretely updated moving

window transform.

sy o
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CHAPTER 9
CONCLUSIONS

ﬁe have surveyed the literature of texture analysis,
developed an experimental method of comparing texture
measures, evaluated co~occurrence and correlation
statistics, tested hundreds of spatial-statistical
operators, documented a new texture energy approach, and
implemented a texture classification system. Tt is time
to review these accomplishments and to suggest further

research.

9.1 Summary

Attempts at guantitative texture measurement began at
least two decades ago. Most of the tools of engineers and
computer scientists have been tried, including
claessification, correlztion, 1linear prediction, Fourier
analysis, joint density estimation, cluster analysis, and

syntactic analysis. Few methods have proven useable.

We have <chosen to study' high-resolution natural

textures. These have been modified to have 1identical

histograms, making texture analysis the only way to tell

them apart. Any procedure which can accurately classify b

the image pixels must therefore be measuring texture.

Relative classification accuracy for a particular dataset

can be used as a quality measure.

The class of co-occurrence statistics was
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investigated. Several methods of information extraction
were tried, with 1little 1improvement over the Earalick
measures. Clessification accuracy could not be raised

above 72% for our experimental dataset.

Pugmented autocorrelation stetistics were also
eveluated, Classification accuracy was limited to 65%,
and this was achievable without using autocorrelation
measures. The Laplacian operator wes found to extrsct
more texture informetion than the Sobel gradient magnitude

or Markov whitening operators.

The Laplacian method led to 2 more general class of
spatial-statisticel trensforms. Bundreds of operators
were tried, including stetisticel moments, spatizal
moments, rotation-invariant end contrest-invariant
moments, joint spetisl-statistical moments, combined 3x3
and 5x5 moments, and 2 large class of ad hoc convolution
operators. Classification accuracies above B88% were

achieved, but no one system was satisfactory.

Texture energy transforms were then developed. They
are a class of spetisl-statistical transforms, and
incorporate all of thc lessone learned in earlier work.
The essence of this approcch is local measurement of ¢the
energy passed by & set of symmetric 2nd eantisymetric
filters. Classification eccuracins as high as 94% were

zchieved, despite the simplicity of the algorithm.

A particular set of 5x5 masks was chosen for the
final oanalysis system. The outputs of 15 filters,

normalized by local contrast, were used to build principal
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component planes 2and <classification maps. Average
classification accuracy within large areas was 87%, with

sufficient resolution to identify elements in a mosaic of

16x16 texture blocks. The ability to trade resolution for

higher accuracy wes &lso demonstrated.

9.2 Iterative Improvement

Texture segmentation, as discussed so far, 1is a
preprocessing technique for 1locating uniformly textured
regions. The next step 1is to epply more specific
knowledge SOUrCes to improve the segmentation or

. classification.

Initiecl segmentation of 2 texture imsge may be done
with known prototypes (such es wheat, corn, forest, etc.)
or with cluster centers extracted from the image data. TIn
either cese it 1ig desirable to rte-exawmine regions to
compute more accurate texture statistics than were used in

the initial segmentation.

The improved statistics may be used for reclassifying
pixels along the region borders. Thie amounts to
hypothesis testing, since the pixel is to be ezssigned to

one texture field or the other, or to & third reaion such

&s 2 river or road sepaerating the first two. The linear
prediction technique of Deguchi and Morishite [18) could
te adepted to this purpose, as could the relaxetion

methods of other researchers [8§31, (841,
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9.3 Modeling of Natural Textures

A major application of texture perception 1is the
interpretation of aserial photogrephs. Tf toxtured aress
are to be identified, we must stert with & training set of
known textures. The paremeters of these textures r~7n be
used as prototypes or design constrainte in the

development of classifiers.

Tmage textures 2re dependent on the im2girg system
with which they were created,. Humans 2re &ble to
compensate for changing imaging conditions, but zrtificieal
vision systems have not yet mestered this trick. Tt is
therefore necessary to study the effect on texturc
feztures of changes in scale, illumination, rotation,
geometric warp, atmospheric blur, opticel aberrations,
film or detector noise, é&nd method of auentization.
Texture energy features are paerticulerly well cuited for

this type of modeling.

9.4 Perceptual Modeling

Texture description must ultimately be done in bumzn
terms. Tt would be useful to know how texture enerqgy
measures correlate with humen texture perception. Texture
enerdy processing seems similer to kncocwrn functions of the

visual cortex, but such cleime need to be subctantiarted,

One careea needing regearch is the processina  of
texture in color imeqgery. It i doubtfu® +that npatpra?
vigion systems determine texture sopsretely in rochk celer
plere, but suchk me*ho’'s hrve boen cuqarsted for diaits]

systeme, Ferhops suchk methcods cor Futyroct more
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information from multispectral imagery than is now
possible. For perceptual modeling, it is more likely that

texture is computed only in an adaptively. processed

luminance plane.

9.5 Texture Synthesis

Tmage synthesis is the oprosite of image
understanding, just 2as reconstruction is the opposite of
compression. BRoth zre cttempts to displey deta in & form

which humens can readily underestend.

; ‘. Texture synthesis is most useful for background
regions. These can be tranesmitted or stored gs sets of
} shape and texture parameters, then synthesized for visusl
display. For 1large beckground regions this permits

tremendous date compression.

Some texture meesures &sre well suited to synthesis.

Haralick's co-occurrence statistice cen be directly

implemented es pixel-generating probsbilities, and Pratt's

method [8] can be used to generate texture fields from

correlation statistics. The whitening method of Faugeras

* and Pratt [63] can zlso be revercsed to generate tcxtures.

It has not vyet bkeen determined whether texture energy

measures can be used for synthesis.

9.6 Conclusions

In retrospect, texture enelysis does not seem such 2

difficult problem. A fast and elegant solution has been
found. We have shown that texture eneray measures
effectively discriminate texture fields, and that they can

be used for segmentation of natural images,
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Texture enetrgy measures have much in common with the

Fourier stetistics of Lendaris and Stanley, and with the

spot density, edge density, and varience statistics of

other rescarchers. WNo doubt other descriptions for this

egnalysis method will be found, but the concept of local

e

pattern energy is firmly established,
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APPENDIX A
HISTOGRAM EQUALIZATION

Each image vused 2s input to the analysis routines was

first equalized to compensate for differences in

illumination and processing. Fach image cr feature pléene

printed in this document was equelized to make meximum use

of the limited dynemic range of the printing process.

The following program is the core of the histogrem

equelization procedure used in thie study. Tt ic part of

o sk

the VCTLIB segment of the &ATLIB 1library of image
processing routines written and meintained by the author.

The subroutine is written in SAIL,
INTERNAL PRGCEDURE EQLCUT ' 1
(INTEGER ARRAY IMG!HST:
REFERENCE TMNTEGER ARRRY CUT!PNT):

COMMENT
Purpose:
Segments a histogrem vector into ecual portions.
Author :
Kenneth I, Laws.
Last Revision:
March 5, 1979,
Input:
IMGIHST is the origineal histogram. Tt should bhave
increesing indexing eond non-negative elements.

Cutput:
CUT!PNT should be indexed from 1 through the number of
probability bins degired. FEach element of CUT!PNT
will be set to the highest index of the original
histogr=m which should be assigned to that bin. The
last cutpoint will zlweys be the hiqghest index of
IMG!HST.




Remarks:

The cutpoints &are similar to percentiles or guantiles.
Each cutpoint is chosen to minimize the error in the
cumulativce probability up to and including that bin.
Slightly different results might be obtained by
starting et the other end, and there ecre & few
histogrems for which this algorithm will not yield
good results. For an optimel equalization algorithm
see S.-K. Chang &nd Y.-W. Wong, Communications of the
ACM, Oct. 1978. The algorithm used here is similar to
the EPQ method of Richard Conners {which is similar to
that of BHarelick), except that cutpoints are matched
to percentage of totel probability rather than
percentage of remaining probability,

END COMMENT;

BEGIN "EQLCUT"

INTEGER MIN!IMG!VAL,MAX!IMG!VAL,N!RINS;

"Determine the 0ld and new histogram limits."
MIN!IMG!VAL := ARRINFC(IMG!HST,1);
MAX!TMG!VAL := ARRINFC(IMG!HST,?2);

N!BINS := ARRINFC (CUT!PNT, 2);

"Allocete a vector for the cumulative histogram."
BEGIN "ALLOCATE"

ot dodbtbi aaiauibuicily

INTEGER NOW!VAL,TTL!CNT,LST!CUT,NOW!CUT;
INTECER ARRAY HST!SUMIMIN!IMG!VAL:MAX!IMG!VAL];

"Form the cumulative histogram."
TTL!CNT := 0
FOR NOW!VAL := MIN!IMG!VAL STEP 1 UNTTL MAX!IMG!VAL DO
HST!SUM[NOW!VALI
t= (TTL!CNT := TTL!CNT+IMG!HSTINOW!VALI}) ;

"Determine the recuantization cutpoints."
LST!CUT := MIN!TMG!VAL;
FOR NOW!CUT := ] STEF 1 UNTIL N!RINS DO BECIN “CUTENT"

INTEGER NOW!VAL,NCW!TTL;
REAL ECL!TTL,CLD!ERR;

"Compute the threshold for this bin."
ECL!TTL := TTL!CNT*NOW!CUT/N!BRINS;
OLD!ERR := TTL!CNT+1;
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"Find the highest cutpoint for which
the error is minimum."

FOR NCW!VAL := LSTICUT STEP 1 UNTIL MAX!TMC!VAL
BECIN "FNDCUT"

REAL NOW!ERR;

NOW!TTL := HST!SUM[NOW!VAL];
NOW!ERR := APS (ECL!TTL-NOW!TTL):
IF CLD!ERR < NOW!ERR THEN DONE "FNDCUT";
OLD!ERR := NOW!ERR;
CUT!PNT [NOW!CUT] := NCW!VAL;
END "FNDCUT";

LST!CUT := CUT!PNT|[NCW!CUT];
END "CUTPNT";
END "ALLOCATE";
END "EQLCUT";

Do
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APPENDIX B
MACRO WINDOW STATISTICAL TRANSFORM

This section documents the algorithm used to compute
the ABSAVE macro feature plene from a micro feature plane.

The computation of the mecro window statistic 1is done

- block by block to save storage. This block size has no :
. relation to the window size. Within each block, the |
H transformation is done by s moving-window algorithm. The

o e

. more complicated.
i INTERNAL PFROCFDURE ARCAVE

(SAFE REAL ARRAY IMCIMTX;
INTEGER MIN!PLK!ROW,MIN!RLK!CCL;
REFERENCE SAFE REAL ARRAY AVE!MTX:
INTEGER WDW! SZE) ;

COMMENT
Furposc:
Computes the mean absolute level around each pixel.
Author:
Kenneth T. Laws.
Last Revision:
August 26, 1979,

Tnput:

IMCGIMTX must be 3 matrix with at least WDW!SZF%2 rows

and columns surrounding the desired sub-block. The

dete block will be z submetrix the same size as

AVFIMTX. The sauere window size must be an odd

integer. Tt may be larger or smaller than tre block

#17ze. The non-cpotial moments will be computed within .
wi~dnw of this size arouvnd each pixel of the data ‘

AR
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Output:
The output matrix must not be the same 2s the input
matrix. Each element of CUT!IMTX will be ecssigned the
average of absolute velues in the corresponding data
window.

Remarks:
The elgorithm is linear in the block size (sauaredy,
and constant in the window sizc!
Note that the arguments are real =srreys. This ic pore
general than using integer arithmetic, but clowrr nr
some machines.
END COMMENT;

. BEGIN "ABSAVE"

! Require SUBRLIBR procedures;
3 EXTERNAL PROCEDURE ADCFLT (RFAL NEW!VAL;
f REFERENCE REAL FLT!VAL);

INTEGER MIN!CUT!ROW,MAX!CUT!ROW,BLK!RCWS ,MTINICUT!CCT.,
MAX!OUT!COL,BLK!COLS,ELF!WDW!ISZF ,MIN! TMC! RCW,
MAX! TMG! ROW,MINI!TMG!COL,MAX I TMC!COL;

REAL SZE!FCTR;

"Check velidity of the input arguments."
BLF!WDW!SZE := WDW!SZE%2;
IF NOT (3 <= WDW!SZE < 512) OR WDWISZF = 2*HLF!WDW!E7F
THEN USEREFRR(0,1,
"ABSAVE: WDW!SZF must be & small odd integer."):

"Determine the deta end output block dimensione."
M MIN!OUT!ROW := ARRINFC (AVE!MTX,1):

MAX!OUT!ROW := ARRINFC (AVE!MTX,2):

BLK!RCWS := MAX!OUT!RCW+4+1-MIN!CUT!RCW;

MIN!QUT!COL := ARRINFC (AVE!MTX, 2);

MAX!ICUT!COL := ARRINFC (AVE!VNMTX,4);

BLK!CCLS := MAX!OUT!CCL+1-MIN!CUT!CCL;

"Set dimensions for the augmented imzge block."

MIN!IMG!ROW := MIN!PLK!ROW-HLF!WDW!ES2F;

MAX! IMG!RCW MIN!BLKi{ ROW+BLK! ROWS+HLF | WDW! S7F~1;
! MIN!IMG!CCL MINM!IBLK!COL-HLF!WDW! S7F;

MAX!IMG!COL MIN!RLK!CCL+RLK!CCLE+HLF!WLW!I E7F-1;

won

"Precompute the window size factor."
SZE!FCTE := 1.0/WDW!SZF"2;

"Use block structurs to allocate workinag vectere,"
BECIN "ALLGCATE"




TNTEGER MIN!WDW! ROW,MAX!WDW! ROW, TMG!CCL, TMG! ROW,
OUT ! ROW;

REAL WDW! SUM; :

SAFE REAL ARRAY COL!SUM[MIN!TIMG!CCL:MAX!TMG!COL];

"Set pointers to the top and bottom window rows."
MIN! WDW! ROW := MIN!IMG!ROW;
MAX!WDW! ROW := MIN!WDW! ROW+WDW!SZF-1;

"Load the accumulator vector."
ARRCLR (COL ! SUM) ;
FOR IMG!COL := MIN!TMG!CCL STEF 1 UNTIL MAX!IMG!CCL DO
FOR IMGC!ROW := MIN!WDW!ROW STEP 1 UNTIL M2AX!WDW! ROW
DO ADDFLT (ARS (TMG!MTX[IMG!ROW, IMC!CCL) ,
COL!SUM[IMG!CCL]) ;

"Compute and store the local average plane."
FCR OUT!ROW := MIN!CUT!RCW STEP 1 UNTIL MAX!CUT!ROW DO
BEGIN "CNEROW"

R

} " INTEGER MIN!WDW!COL,MAX!WDW!COL,0UT!CCL:

. "Update the column sum except on the first time."
IF CUT!ROW > MIN!QUT!ROW THEN BECTN "UPDATE"
MAX!WDW! ROW := MAX!WDW!ROW+] ;
FOR IMG!CCL := MIN!TIMG!COL STEFP i UNTTL
MAX!TMG!CCL DO
ADDFLT (ABS (IMG!MTX [MAX ! WDW! ROW, TMG!COL1)
~ARS (IMC!MTX [MIN!WDW! ROW, IMC!COL]1) ,
COL!SUM[IMG!CCL]) ;
MIN!WDW!ROW := MIN!WDW! ROW+1;
END "UPDATE";

"Set pointers to the left and right window columns."
MIN!WDW!CCL := MIN!IMG!CCL;
MEX!WDW!COL := MIN!WDW!CCL+WDW!SZE-];

SO ————————————

"10ad the cumulative total for the 'zeroth' block."

WDW!SUM := 0.0;

FCR IMG!COL := MIN!WDW!COL STFP 1 UNTIL MAX!WDW!CCL
DO WDW!SUM := WDW!SUM + CCL!SUM[IMG!COL1;

"Compute the sums for this row. Use trick
initialization of MIN!WDW!CCL to start the loop."
MIN!WDW!COL := MAX!WDW!COL:
i MAX!WDW!COL := MAX!WDW!COL-1:
! FCR OUT!COL := MIN!CUT!COL STEP 1 UNTTL MAX!OUT!COL
DO BEGIN "WDWSUM"

s B
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"Center the block total on the new column."
MAX!WDW!CCL := MAX!WDW!COL+1;
WDW!SUM := WDW!SUM

+ COL!SUMIMAX!WDW!CCL]I-COL!SUM[MINIWDW! COL1;
MIN!WDW!CCL := MAXIWDW!COL+l1-WDW!SZF:

"Store the average of 2bsolute values."
AVE!MTX [OUT!ROW,CUT!CCL] := WDW!SUM*SZE!FCTR;
END "WDWSUM"; '
END "ONEROW";
ENC "ALLCCATE";
FnD “"ABSAVE";
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APPENDIX C .
DISCRIMINANT ANALYSIS

All discriminant analyses used 1in this study were A

done with the SPSE statistical =2nelysis system. This
package is availeble from €&PSS, 1Inc., Suite 12300, 444 :
;
. N. Michigan Ave., Chicago, IL 60611. ;
E
. F
. The mathematical besis of the S£PSS algorithms [85] is E |

given below, The formulas have been simplified by the

-

assumptions that the texture classes are ecually likely
‘ and that the ceme numker of samples have been taken from

each class, conditions that were satisfied rhrouvghout this

study.

C.1 Notation

fklm the value of feature 1 = 1,...,L
for semple m = 1,...,M
: within texture class k = 1,...,K.
E o N the totzl number of texture samples.

Within~Group Sums of Cross-Products Matrix

K M K M M
1
w..=§§f.f.--§(§f.)(§f.)

k k M kim kim
s G B k=1 m=1 =1
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[:,]
]

kimfkjm

M
- § ¢ Z fkimHZ Z fesm!

K
k=1 m=1 k=1 m=1

Tolerance

0 if w =0

11

TCL, = wIl/w11 variable 1 not in the model

*

11"11 otherwise

-1/w

F-to-remove

1 *
tll/ (N+1-K-q)
F~-to-enter
* %*
F (tll-wll)/(K-l)
] = STTFm=sSes----

*
Wll/(N'K'Q)

Wilks' Lambda

LAMBDA = IE11|/|211|
with degrees of freedom g, K-1, 2nd N-K.
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C.2 Variable Selection
SPSS permits either direct or stepwise entry of

variagbles into the model. This study used stepwise entry

with the threshold constants given below. At each step:

- Bach variable in the model 1is considered for
removal. A variable is eligible for removal if
its F-to-remove is less than FCUT=40. If more
than one is eligible, that variable is removed
which leaves the lowest Wilks' lambda for the
remaining model. Variables are then
re-evaluated and removal continues until no more
variables are eligible.

. - The best variable not in the model 1is then
selected. A variable is not considered if its
inclusion would cezuse the tolerance of any
; included variable (or its own tolerance) to drop
r below TOLERANCE=0.0001. Neither is it
considered if its F-to-enter 1is 1less than
FIN=40. The eligible variable with the highest
F-to-enter is then included in the model.

- Processing =stops when no more variaebles ore
eligible for inclusion.

During vsrieble selection, the matrix W is replaced

*
at each step by metrix W . If the first g variables have

been included, we pertition W to be

. W W
W o= |11 712
%1 ¥
! where Ell is qxgq. Then
-1 -1
* " %1%,

L WauWol  wo- wo.wilw
Wo1¥30  Woom Wo¥11¥0

or, by definition,

E* - |11 =12




‘qb»

*
T is similarly replaced by T .

C.3 Fischer's Linear Discriminant PFunctions

i i f '
bik - (N—K) wil ki l = 1’ o e ,q

=1
a = log ¢ - 3 b1Fxa
where ) ’
M
LN mz;fklm

C.4 Canonical Discriminant Functions
The cenonicel discriminant function coefficients are

determined by solving the general eigenvalue problem
(I-W)V = DWV

where V is the unscaled metrix of discriminant function
coefficients and D is & diagonal metrix of eigenvalues.

The eigensystem is solved as follows:

W = LU

is formed (Cholesky decomposition), where L is 2 lower

triangulsr matrix and U = L'.

1 1

The symmetric metrix L~

" (r-wu

E‘[_J‘-
-1

is formed end the system
- DUV = 0

is solved using tridizgoneslization and the QL method. The
result is r = min(q,K-1) eigenvalues and corresponding

orthonormal eigenvectors UV. The eigenvectors of the

originel system are

v = vty
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ordered by decreasing magnitude of eigenvalue. The
standardized canonical discriminant coefficient matrix is

. 1/2 1/2 1/2
dlag(w11 A LY I AR wqq )YV

where !1 is the matrix of eigenvectors such that

Vi¥nvy, =1
C.5 Classification
Let f be the 1xg vector of discriminating variables
for a perticuler texture sample. The 1xr vector of

canonical discriminent function values is

g = fB + a

A chi-square distance from each centroid is computed

as

Xp = (4 - Qk)(g - ék)'

where gk is the mean vector for class k. The distribution
of Xy is chi-sgquare with r degrees of freedom if the

texture sample is a member of class k.

The classification, or posterior, probability is

P(klg) = cmem—c————

This takes into account the eogual prior probabilities and
that the pooled within groups covariance metrix of the
discriminant functions is an identity metrix. Each case
is classified into the class for which P(kld) is highest.

The calculation actually used by SPSS is
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0 9k~ gmax < -46
Py = exp(g,~ g )
* e otherwise
i | K
Z exp(g - g )
i=1 i max ,'
where
1 1
gk = ].Og I-( - ixk
a Inax max g,
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